在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)求AB的長(zhǎng);
(2)如圖,已知P為BC的中點(diǎn),以P為圓心的⊙P與AB相切于點(diǎn)D.若以C為圓心的⊙C與⊙P相切,求⊙C的半徑.

【答案】分析:(1)根據(jù)勾股定理進(jìn)行計(jì)算;
(2)注意分情況討論:兩圓相切,可能內(nèi)切,也可能外切.根據(jù)兩圓的位置關(guān)系與數(shù)量之間的聯(lián)系,主要是求得⊙P的半徑,再進(jìn)一步進(jìn)行分析即可.
解答:解:(1)∵C=90°,AC=3,BC=4,
∴AB=5;

(2)根據(jù)題意,得PC=PB=2,
連接PD,則PD⊥AB,
∵∠BDP=∠C=90°,又∠B=∠B,
∴△ABC∽△PBD.
,PD=1.2.即該圓的半徑是1.2.
點(diǎn)評(píng):熟練運(yùn)用勾股定理,掌握相似三角形的判定和性質(zhì),能夠根據(jù)相似三角形的性質(zhì)得到比例式,從而進(jìn)行計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點(diǎn),以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點(diǎn)D是AB的中點(diǎn),點(diǎn)O是△ABC的重心,則OD的長(zhǎng)為( 。
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應(yīng)為(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為( 。
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習(xí)冊(cè)答案