4.如圖,在矩形ABCD中,點(diǎn)O是對(duì)角線AC上一點(diǎn),以O(shè)C為半徑的⊙O與CD交于點(diǎn)M,且∠BAC=∠DAM.
(1)求證:AM與⊙O相切;
(2)若AM=3DM,BC=2,求⊙O的半徑.

分析 (1)首先連接OE,由四邊形ABCD是矩形,∠BAC=∠DAM,可證得∠OMC+∠DMA=90°,即可得∠AMO=90°,則可證得AM與⊙O相切;
(2)易證得△BAC∽△DAM,由相似三角形的性質(zhì)得到$\frac{BC}{DM}$=$\frac{AC}{AM}$,得到$\frac{BC}{AC}$=$\frac{DM}{AM}$,根據(jù)AM=3DM,BC=2求得AC=6,在△DAM中,根據(jù)勾股定理得DM2+AD2=AM2,即可求得DM和AM,在△AMO中,根據(jù)AM2+MO2=AO2求得OM的長,即可得⊙O的半徑.

解答 (1)證明:連接OM.
在矩形ABCD中,AB∥DC,∠D=90°
∴∠BAC=∠DCA,
∵OM=OC,
∴∠OMC=∠OCM.
∵∠BAC=∠DAM,
∴∠DAM=∠OMC.
∴∠OMC+∠DMA=∠DAM+∠DMA.
在△DAM中,∠D=90°,
∴∠DAM+∠DMA=180°-90°=90°.
∴∠OMC+∠DMA=90°.
∴∠AMO=90°,
∴AM⊥MO.
點(diǎn)M在⊙O上,OM是⊙O的半徑,
∴AM與⊙O相切. 
(2)在△BAC與△DAM中,
∵∠BAC=∠DAM,∠B=∠D,
∴△BAC∽△DAM,
∴$\frac{BC}{DM}$=$\frac{AC}{AM}$,
∴$\frac{BC}{AC}$=$\frac{DM}{AM}$.
∵AM=3DM,
∴AC=3BC.BC=2,
∴AC=6,
在△DAM中,DM2+AD2=AM2
即DM2+22=(3DM)2
解得DM=$\frac{\sqrt{2}}{2}$.AM=$\frac{3\sqrt{2}}{2}$.
在△AMO中,AM2+MO2=AO2
即($\frac{3\sqrt{2}}{2}$)2+MO2=(6-MO)2
解得MO=$\frac{21}{8}$.

點(diǎn)評(píng) 此題考查了切線的判定、相似三角形的判定與性質(zhì)、矩形的性質(zhì)以及勾股定理.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.解方程:$\frac{x-1}{x-2}-1=\frac{8}{{{x^2}-4}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

15.己知∠α=40°,則∠α余角的度數(shù)是50°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

12.已知二次函數(shù)y=x2-x+a(a>0),當(dāng)自變量x取m時(shí),其相應(yīng)的函數(shù)值小于0,那么下列結(jié)論中正確的是(  )
A.m-1>0B.m-1<0
C.m-1=0D.m-1與0的大小關(guān)系不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.如圖,G是邊長為8的正方形ABCD的邊BC上的一點(diǎn),矩形DEFG的邊EF過點(diǎn)A,GD=10.
(1)求FG的長;
(2)直接寫出圖中與△BHG相似的所有三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

9.下列幾何體中,從正面看(主視圖)是長方形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.如圖是一塊長為a,寬為b(a>b)的長方形空地,要將陰影部分綠化,則陰影面積是( 。
A.a2b2B.ab-πa2C.$ab-\frac{π}{4}{b^2}$D.$ab-\frac{π}{4}{a^2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

13.一次函數(shù)y=2x+1的圖象不經(jīng)過( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

14.如圖,數(shù)軸上點(diǎn)A表示的數(shù)為a,化簡:|a-1|+2|a+3|=a+7.(用含a代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案