精英家教網 > 初中數學 > 題目詳情
如圖所示,已知直線AB∥CD,∠C=125°,∠A=45°,則∠E的度數為( )

A.70°
B.80°
C.90°
D.100°
【答案】分析:首先根據兩條直線平行,同位角相等,得∠BFE的度數;再根據三角形的一個外角等于和它不相鄰的兩個內角和求解.
解答:解:∵AB∥CD,∠C=125°,∴∠BFE=125°.∴∠E=∠BFE-∠A=125°-45°=80°.
故選B.
點評:此題運用了平行線的性質以及三角形的一個外角等于和它不相鄰的兩個內角和.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖所示,已知直線L過點A(0,1)和B(1,0),P是x軸正半軸上的動點,OP的垂直平分線交L于點Q,交x軸于點M.
(1)直接寫出直線L的解析式;
(2)設OP=t,△OPQ的面積為S,求S關于t的函數關系式;并求出當0<t<2時,S的最大值;
(3)直線L1過點A且與x軸平行,問在L1上是否存在點C,使得△CPQ是以Q為直角頂點的等腰直角精英家教網三角形?若存在,求出點C的坐標,并證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

4、如圖所示,已知直線a∥b,被直線L所截,如果∠1=69°36′,那么∠2=
69
36
分.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,已知直線AB過點C(1,2),且與x軸、y軸分別交于點A、B,CD⊥x軸于D,CE⊥y軸于E,CF交y軸于G,交x軸于F.(F在原點O的左側)
(1)當直線AB的位置正好使得△ACD≌△CBE時,求A點的坐標及直線AB的解析式.
(2)若S四邊形ODCE=S△CDF,當直線AB的位置正好使得FC⊥AB時,求A點的坐標及BC的長.
(3)在(2)成立的前提下,將△FOG延y軸對折得△F′O′G′(對折后F、O、G的對應點分別為F′、O′、G′),將△F′O′G′沿x軸正方向精英家教網平移,設平移過程中△F′O′G′與四邊形ODCE重疊部分面積為y,OO′的長為x(0≤x≤1),求y與x的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖所示,已知直線y=kx-2經過M點,求此直線與x軸交點坐標和直線與兩坐標軸圍成三角形的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示:已知直線y=
1
2
x
與雙曲線y=
k
x
(k>0)
交于A、B兩點,且點A的橫坐標為4.
(1)求k的值;
(2)過A點作AC⊥x軸于C點,求△AOC的面積.

查看答案和解析>>

同步練習冊答案