【題目】如圖,在RtΔABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙OAC于點(diǎn)D,點(diǎn)EAB邊上一點(diǎn)(點(diǎn)E不與點(diǎn)A、B重合),DE的延長線交⊙O于點(diǎn)G,DFDG,且交BC于點(diǎn)F.

(1)求證:AE=BF;

(2)連接EF,求證:∠FEB=∠GDA;

(3)連接GF,AE=2,EB=4,求ΔGFD的面積.

【答案】(1)(2)見解析;(3)9

【解析】分析:1)連接BD,由三角形ABC為等腰直角三角形求出∠A與∠C的度數(shù),根據(jù)AB為圓的直徑,利用圓周角定理得到∠ADB為直角BD垂直于AC,利用直角三角形斜邊上的中線等于斜邊的一半,得到AD=DC=BD=AC進(jìn)而確定出∠A=FBD再利用同角的余角相等得到一對(duì)角相等,利用ASA得到三角形AED與三角形BFD全等,利用全等三角形對(duì)應(yīng)邊相等即可得證;

2)連接EF,BG,由三角形AED與三角形BFD全等得到ED=FD,進(jìn)而得到三角形DEF為等腰直角三角形,利用圓周角定理及等腰直角三角形性質(zhì)得到一對(duì)同位角相等利用同位角相等兩直線平行再根據(jù)平行線的性質(zhì)和同弧所對(duì)的圓周角相等,即可得出結(jié)論;

3)由全等三角形對(duì)應(yīng)邊相等得到AE=BF=1,在直角三角形BEF利用勾股定理求出EF的長,利用銳角三角形函數(shù)定義求出DE的長,利用兩對(duì)角相等的三角形相似得到三角形AED與三角形GEB相似,由相似得比例求出GE的長GE+ED求出GD的長,根據(jù)三角形的面積公式計(jì)算即可.

詳解:(1)連接BD.在RtABC,ABC=90°,AB=BC∴∠A=C=45°.

AB為圓O的直徑,∴∠ADB=90°,BDAC,AD=DC=BD=ACCBD=C=45°,∴∠A=FBD

DFDG,∴∠FDG=90°,∴∠FDB+∠BDG=90°.

∵∠EDA+∠BDG=90°,∴∠EDA=FDB.在AED和△BFD,∴△AED≌△BFDASA),AE=BF;

2連接EF,BG

∵△AED≌△BFDDE=DF

∵∠EDF=90°,∴△EDF是等腰直角三角形∴∠DEF=45°.

∵∠G=A=45°,∴∠G=DEFGBEF,∴∠FEB=∠GBA

∵∠GBA=∠GDA,∴FEB=GDA

3AE=BF,AE=2BF=2.在RtEBF,EBF=90°,∴根據(jù)勾股定理得EF2=EB2+BF2

EB=4BF=2,EF==

∵△DEF為等腰直角三角形EDF=90°,cosDEF=

EF=,DE=×=

∵∠G=AGEB=AED,∴△GEB∽△AED=GEED=AEEBGE=8GE=,GD=GE+ED=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解我市家庭月均用電量情況,有關(guān)部門隨機(jī)抽查了我市1000戶家庭的月均用電量,并將調(diào)查數(shù)據(jù)整理如下:

1)頻數(shù)分布表中的m=    ,n=    

2)補(bǔ)全頻數(shù)分布直方圖;

3)被調(diào)查的1000戶家庭月均用電量的眾數(shù)落在哪一個(gè)范圍?

4)求月均用電量小于150度的家庭數(shù)占被調(diào)查家庭總數(shù)的百分比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為提高學(xué)生體考成績,對(duì)全校300名九年級(jí)學(xué)生進(jìn)行一分種跳繩訓(xùn)練.為了解學(xué)生訓(xùn)練效果,學(xué)校體育組在九年級(jí)上學(xué)期開學(xué)初和學(xué)期末分別對(duì)九年級(jí)學(xué)生進(jìn)行一分種跳繩測試,學(xué)生成績均為整數(shù),滿分20分,大于18分為優(yōu)秀.現(xiàn)隨機(jī)抽取了同一部分學(xué)生的兩次成績進(jìn)行整理、描述和分析.(成績得分用x表示,共分成五組:Ax13,B.13x15,C.15x17D.17x19E.19x20

開學(xué)初抽取學(xué)生的成績?cè)?/span>D組中的數(shù)據(jù)是:17,17,17,1717,18,18

學(xué)期末抽取學(xué)生成績統(tǒng)計(jì)表

學(xué)生成績

A

B

C

D

E

人數(shù)

0

1

4

5

a

分析數(shù)據(jù):

平均數(shù)

中位數(shù)

眾數(shù)

開學(xué)初抽取學(xué)生成績

16

b

17

學(xué)期末抽取學(xué)生成績

18

18.5

19

根據(jù)以上信息,解答下列問題:

1)直接寫出圖表中ab的值,并補(bǔ)全條形統(tǒng)計(jì)圖;

2)假設(shè)該校九年級(jí)學(xué)生都參加了兩次測試,估計(jì)該校學(xué)期末成績優(yōu)秀的學(xué)生人數(shù)比開學(xué)初成績優(yōu)秀的學(xué)生人數(shù)增加了多少?

3)小莉開學(xué)初測試成績16分,學(xué)期末測試成績19分,根據(jù)抽查的相關(guān)數(shù)據(jù),請(qǐng)選擇一個(gè)合適的統(tǒng)計(jì)量評(píng)價(jià)小莉的訓(xùn)練效果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,將ABC沿直線AB翻折得到ABD,連接CDAB于點(diǎn)ME是線段CM上的點(diǎn),連接BEFBDE的外接圓與AD的另一個(gè)交點(diǎn),連接EF,BF,

1)求證:BEF是直角三角形;

2)求證:BEFBCA;

3)當(dāng)AB=6,BC=m時(shí),在線段CM正存在點(diǎn)E,使得EFAB互相平分,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知D、E、F分別是等邊△ABC的邊AB、BCAC上的點(diǎn),且DE⊥BC、EF⊥AC、FD⊥AB,則下列結(jié)論不成立的是( 。

A.△DEF是等邊三角形

B.△ADF≌△BED≌△CFE

C.DE=AB

D.SABC=3SDEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個(gè)單位長度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)△ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn))和點(diǎn)A1.

1)畫出一個(gè)格點(diǎn)△A1B1C1,并使它與△ABC全等且AA1是對(duì)應(yīng)點(diǎn);

2)畫出點(diǎn)B關(guān)于直線AC的對(duì)稱點(diǎn)D,并指出AD可以看作由ABA點(diǎn)經(jīng)過怎樣的旋轉(zhuǎn)而得到的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),拋物線與線段有兩個(gè)不同的交點(diǎn),其中點(diǎn),點(diǎn).有下列結(jié)論:

①直線的解析式為;②方程有兩個(gè)不相等的實(shí)數(shù)根;③a的取值范圍是.

其中,正確結(jié)論的個(gè)數(shù)為(

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形具有不穩(wěn)定性,對(duì)于四條邊長確定的四邊形.當(dāng)內(nèi)角度數(shù)發(fā)生變化時(shí),其形狀也會(huì)隨之改變.如圖,改變正方形ABCD的內(nèi)角,正方形ABCD變?yōu)榱庑?/span>ABCD.若DAB30°,則菱形ABCD的面積與正方形ABCD的面積之比是( 。

A.1B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB兩家酒店規(guī)模相當(dāng),去年下半年的月盈利折線統(tǒng)計(jì)圖如圖所示.

1)要評(píng)價(jià)這兩家酒店7~12月的月盈利的平均水平,你選擇什么統(tǒng)計(jì)量?求出這個(gè)統(tǒng)計(jì)量;

2)已知A,B兩家酒店7~12月的月盈利的方差分別為1.073(平方萬元),0.54(平方萬元).根據(jù)所給的方差和你在(1)中所求的統(tǒng)計(jì)量,結(jié)合折線統(tǒng)計(jì)圖,你認(rèn)為去年下半年哪家酒店經(jīng)營狀況較好?請(qǐng)簡述理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案