如圖,在菱形ABCD在,AE⊥BC,E為垂足,且BE=CE,AB=2.求:
(1)∠BAD的度數(shù);
(2)對(duì)角線AC、BD的長(zhǎng).
分析:(1)由在菱形ABCD在,AE⊥BC,BE=CE,易證得△ABC是等邊三角形,繼而求得∠BAD的度數(shù);
(2)由(1),可求得AC的長(zhǎng),然后由勾股定理求得BD的長(zhǎng).
解答:解:(1)∵四邊形ABCD是菱形,
∴AB=BC,
∵AE⊥BC,BE=CE,
∴AB=AC,
∴AB=BC=AC,
即△ABC是等邊三角形,
∴∠BAC=60°,
∴∠BAD=2∠BAC=120°;

(2)∵四邊形ABCD是菱形,
∴AC⊥BD,
∵AC=AB=2,
∴OA=
1
2
AC=1,
∴OB=
AB2-OA2
=
3
,
∴BD=2OB=2
3
;
∴AC=2,BD=2
3
點(diǎn)評(píng):此題考查了菱形的性質(zhì)、等邊三角形的判定與性質(zhì)、線段垂直平分線的性質(zhì)以及勾股定理.此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:在菱形ABCD中,AC=6,BD=8,則菱形的邊長(zhǎng)為( 。
A、5B、10C、6D、8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在菱形ABCD中,∠ABC=60°,E為AB邊的中點(diǎn),P為對(duì)角線BD上任意一點(diǎn),AB=4,則PE+PA的最小值為
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河南)如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn).點(diǎn)M是AB邊上一動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交射線CD于點(diǎn)N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為
1
1
時(shí),四邊形AMDN是矩形;
           ②當(dāng)AM的值為
2
2
時(shí),四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•攀枝花)如圖,在菱形ABCD中,DE⊥AB于點(diǎn)E,cosA=
35
,BE=4,則tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在菱形ABCD中,AE⊥BC,垂足為F,EC=1,∠B=30°,求菱形ABCD的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案