如圖拋物線與x軸交于A、B兩點,與y軸交于點C(0.).且對稱抽x=l.
(1)求出拋物線的解析式及A、B兩點的坐標;
(2)在x軸下方的拋物線上是否存在點D,使四邊形ABDC的面積為3.若存在,求出點D的坐標;若不存在.說明理由(使用圖1);
(3)點Q在y軸上,點P在拋物線上,要使Q、P、A、B為頂點的四邊形是平行四邊形,請求出所有滿足條件的點P的坐標(使用圖2).
解:(1)∵拋物線與y軸交于點C(0.-1).且對稱抽x=l.
∴ ,解得: ,
∴拋物線解析式為y= x2- x-1,
令 x2- x-1=0,得:x1=-1,x2=3,
∴A(-1,0),B(3,0),
(2)設在x軸下方的拋物線上存在D(a, )(0<a<3)使四邊形ABCD的面積為3.
作DM⊥x軸于M,則S四邊形ABDC=S△AOC+S梯形OCDM+S△BMD,
∴S四邊形ABCD= |xAyC|+ (|yD|+|yC|)xM+ (xB-xM)|yD|
= ×1×1+ [-( a2- a-1)+1]×a+ (3-a)[-( a2- a-1)]
=- a2+ +2,
∴由- a2+ +2=3,
解得:a 1=1,a 2=2,
∴D的縱坐標為: a2- a-1=- 或-1,
∴點D的坐標為(1, ),(2,-1);
(3)①當AB為邊時,只要PQ∥AB,且PQ=AB=4即可,又知點Q在y軸上,所以點P的橫坐標為-4或4,
當x=-4時,y=7;當x=4時,y= ;
所以此時點P1的坐標為(-4,7),P2的坐標為(4, );
②當AB為對角線時,只要線段PQ與線段AB互相平分即可,線段AB中點為G,PQ必過G點且與y軸交于Q點,過點P作x軸的垂線交于點H,
可證得△PHG≌△QOG,
∴GO=GH,
∵線段AB的中點G的橫坐標為1,
∴此時點P橫坐標為2,
由此當x=2時,y=-1,
∴這是有符合條件的點P 3(2,-1),
∴所以符合條件的點為:P1的坐標為(-4,7),P2的坐標為(4, );P 3(2,-1).
【解析】略
科目:初中數(shù)學 來源:四川省中考真題 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖拋物線與x軸交于A、B兩點,與y軸交于點C(0.).且對稱抽x=l.
(1)求出拋物線的解析式及A、B兩點的坐標;
(2)在x軸下方的拋物線上是否存在點D,使四邊形ABDC的面積為3.若存在,求出點D的坐標;若不存在.說明理由(使用圖1);
(3)點Q在y軸上,點P在拋物線上,要使Q、P、A、B為頂點的四邊形是平行四邊形,請求出所有滿足條件的點P的坐標(使用圖2).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(四川廣安卷)數(shù)學 題型:解答題
如圖拋物線與x軸交于A、B兩點,與y軸交于點C(0.).且對稱抽x=l.
(1)求出拋物線的解析式及A、B兩點的坐標;
(2)在x軸下方的拋物線上是否存在點D,使四邊形ABDC的面積為3.若存在,求出點D的坐標;若不存在.說明理由(使用圖1);
(3)點Q在y軸上,點P在拋物線上,要使Q、P、A、B為頂點的四邊形是平行四邊形,請求出所有滿足條件的點P的坐標(使用圖2).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com