(2011•廣元)如圖,AB是⊙O的直徑,BC切⊙O于點B,連接CO并延長交⊙O于點D、E,連接AD并延長交BC于點F.
(1)試判斷∠CBD與∠CEB是否相等,并證明你的結論;
(2)求證:=;
(3)若BC=AB,求tan∠CDF的值.
解:(1)∠CBD與∠CEB相等,
證明:∵BC切⊙O于點B,
∴∠CBD=∠BAD,
∵∠BAD=∠CEB,
∴∠CEB=∠CBD,
(2)證明:∵∠C=∠C,∠CEB=∠CBD,
∴∠EBC=∠BDC,
∴△EBC∽△BDC,
,
(3)∵AB、ED分別是⊙O的直徑,
∴AD⊥BD,即∠ADB=90°,
∵BC切⊙O于點B,
∴AB⊥BC,
∵BC=,
,
設BC=3x,AB=2x,
∴OB=OD=x,
∴OC=,
∴CD=(﹣1)x,
∵AO=DO,
∴∠CDF=∠A=∠DBF,
∴△DCF∽△BCD,
,
∵tan∠DBF==
∴tan∠CDF=.解析:
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2011•廣元)如圖,拋物線y=ax2+2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A(﹣4,0)和B.
(1)求該拋物線的解析式;
(2)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當△CEQ的面積最大時,求點Q的坐標;
(3)平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標為(﹣2,0).問是否有直線l,使△ODF是等腰三角形?若存在,請求出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•廣元)如圖,在直角梯形ABCD中,AD∥BC,BC⊥CD,∠B=60°,BC=2AD,E、F分別為AB、BC的中點.
(1)求證:四邊形AFCD是矩形;
(2)求證:DE⊥EF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•廣元)如圖,M為矩形紙片ABCD的邊AD的中點,將紙片沿BM、CM折疊,使點A落在A1處,點D落在D1處.若∠A1MD1=40°,則∠BMC的度數(shù)為 _________ 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(四川廣元卷)數(shù)學解析版 題型:解答題

(2011•廣元)如圖,拋物線y=ax2+2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A(﹣4,0)和B.
(1)求該拋物線的解析式;
(2)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當△CEQ的面積最大時,求點Q的坐標;
(3)平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標為(﹣2,0).問是否有直線l,使△ODF是等腰三角形?若存在,請求出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案