【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC.BD交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E.連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=.OE=2,求線段CE的長.
【答案】(1)證明見解析;(2).
【解析】
(1)先根據題意得出∠OAB=∠DCA,然后進一步證明出∠DCA=∠DAC,得出CD=AD=AB,然后接著進一步證明即可;
(2)先根據題意得出OE=OA=OC=2,再進一步得出OB=1,通過證明△AOB∽△AEC然后利用相似三角形性質進一步求解即可.
(1)證明:∵AB∥CD,
∴∠OAB=∠DCA,
∵AC為∠DAB的平分線,
∴∠OAB=∠DAC,
∴∠DCA=∠DAC,
∴CD=AD=AB,
∵AB∥CD,
∴四邊形ABCD是平行四邊形,
∵AD=AB,
∴平行四邊形ABCD是菱形;
(2)∵四邊形ABCD是菱形,
∴OA=OC,BD⊥AC.
∵CE⊥AB,
∴OE=OA=OC=2,
∴OB==1,AC=OA+OC=4,
∵∠AOB=∠AEC=90°,∠OAB=∠EAC,
∴△AOB∽△AEC,
∴,
∴=,
∴CE=.
科目:初中數學 來源: 題型:
【題目】2016年,某貧困戶的家庭年人均純收入為2500元,通過政府產業(yè)扶持,發(fā)展了養(yǎng)殖業(yè)后,到2018年,家庭年人均純收入達到了3600元.
(1)求該貧困戶2016年到2018年家庭年人均純收入的年平均增長率;
(2)若年平均增長率保持不變,2019年該貧困戶的家庭年人均純收入是否能達到4200元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:在平面直角坐標系中,拋物線與軸交于點、,與軸交于點,拋物線的頂點到軸的距離為,.
(1)如圖1,求拋物線的解析式;
(2)如圖2,點為第三象限內的拋物線上一點,連接交軸于點,過點作軸于點,連接并延長交于點,求證:;
(3)如圖3,在(2)的條件下,點為第二象限內的拋物線上的一點,分別連接、,點為的中點,點為第二象限內的一點,分別連接,,,且,,若,求點的橫坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市銷售一種高檔蔬菜“莼菜”,其進價為16元/kg.經市場調查發(fā)現(xiàn):該商品的日銷售量y(kg)是售價x(元/kg)的一次函數,其售價、日銷售量對應值如表:
售價(元/) | 20 | 30 | 40 |
日銷售量() | 80 | 60 | 40 |
(1)求關于的函數解析式(不要求寫出自變量的取值范圍);
(2)為多少時,當天的銷售利潤 (元)最大?最大利潤為多少?
(3)由于產量日漸減少,該商品進價提高了元/,物價部門規(guī)定該商品售價不得超過36元/,該商店在今后的銷售中,日銷售量與售價仍然滿足(1)中的函數關系.若日銷售最大利潤是864元,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在以線段AB為直徑的⊙O上取一點,連接AC、BC.將△ABC沿AB翻折后得到△ABD.
(1)試說明點D在⊙O上;
(2)在線段AD的延長線上取一點E,使AB2=AC·AE.求證:BE為⊙O的切線;
(3)在(2)的條件下,分別延長線段AE、CB相交于點F,若BC=2,AC=4,求線段EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F,DH⊥BC于H交BE于G.下列結論:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正確的個數是( 。
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與探究
如圖1,拋物線y=ax2+bx﹣3與x軸交于A(﹣2,0),B(4,0)兩點,與y軸交于點C.
(1)求拋物線的表達式;
(2)點N是拋物線上異于點C的動點,若△NAB的面積與△CAB的面積相等,求出點N的坐標;
(3)如圖2,當P為OB的中點時,過點P作PD⊥x軸,交拋物線于點D.連接BD,將△PBD沿x軸向左平移m個單位長度(0<m≤2),將平移過程中△PBD與△OBC重疊部分的面積記為S,求S與m的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題背景:
如圖(a),點A、B在直線l的同側,要在直線l上找一點C,使AC與BC的距離之和最小,我們可以作出點B關于l的對稱點B′,連接A B′與直線l交于點C,則點C即為所求.
(1)實踐運用:
如圖(b),已知,⊙O的直徑CD為4,點A 在⊙O 上,∠ACD=30°,B 為弧AD 的中點,P為直徑CD上一動點,則BP+AP的最小值為 .
(2)知識拓展:
如圖(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分線交BC于點D,E、F分別是線段AD和AB上的動點,求BE+EF的最小值,并寫出解答過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,,,正方形的邊長為2,將正方形繞點旋轉一周,連接、、.
(1)猜想:的值是__________,直線與直線相交所成的銳角度數是__________;
(2)探究:直線與垂直時,求線段的長;
(3)拓展:取的中點,連接,直接寫出線段長的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com