已知ABCD,對角線AC與BD相交于點(diǎn)O,點(diǎn)P在邊AD上,過點(diǎn)P分
別作PE⊥AC、PF⊥BD,垂足分別為E、F,PE=PF.
(1)如圖,若PE=,EO=1,求∠EPF的度數(shù);
(2)若點(diǎn)P是AD的中點(diǎn),點(diǎn)F是DO的中點(diǎn),BF =BC+3-4,求BC的長.
(1)60°(2)4
【解析】解:(1)連接PO ,
∵ PE=PF,PO=PO,PE⊥AC、PF⊥BD,
∴ Rt△PEO≌Rt△PFO(HL)。
∴∠EPO=∠FPO。
在Rt△PEO中, tan∠EPO==,
∴ ∠EPO=30°! ∠EPF=60°。
(2)∵點(diǎn)P是AD的中點(diǎn),∴ AP=DP。
又∵ PE=PF,∴ Rt△PEA≌Rt△PFD(HL)。
∴∠OAD=∠ODA。∴ OA=OD。
∴ AC=2OA=2OD=BD。∴ABCD是矩形。
∵ 點(diǎn)P是AD的中點(diǎn),點(diǎn)F是DO的中點(diǎn),∴ AO∥PF。
∵ PF⊥BD,∴ AC⊥BD。∴ABCD是菱形!ABCD是正方形。
∴ BD=BC。
∵ BF=BD,∴BC+3-4=BC,解得,BC=4。
(1)連接PO,利用解直角三角形求出∠EPO=30°,再利用“HL”證明△PEO和△PFO全等,根據(jù)全等三角形對應(yīng)角相等可得∠FPO=∠EPO,從而得解。
(2)根據(jù)條件證出 ABCD是正方形。根據(jù)正方形的對角線與邊長的關(guān)系列式計(jì)算即可得解。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com