如圖,O為原點,點A的坐標(biāo)為(3,0),點B的坐標(biāo)為(0,4),⊙DA、B、O三點,點C上一點(不與O、A兩點重合),則cosC的值為

[  ]
A.

B.

C.

D.

答案:D
解析:

  解答:解:如圖,連接AB,

  由圓周角定理,得∠C=∠ABO,

  在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,

  ∴

  故選D.

  分析:連接AB,利用圓周角定理得∠C=∠ABO,將問題轉(zhuǎn)化到Rt△ABO中,利用銳角三角函數(shù)定義求解.

  點評:本題考查了圓周角定理,坐標(biāo)與圖形的性質(zhì),勾股定理及銳角三角函數(shù)的定義.關(guān)鍵是運用圓周角定理將所求角轉(zhuǎn)化到直角三角形中解題.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,O為原點,點A的坐標(biāo)為(3,0),點B的坐標(biāo)為(0,4),⊙D過A、B、O三點,點C為
ABO
上一點(不與O、A兩點重合),則cosC的值為( 。
A、
3
4
B、
3
5
C、
4
3
D、
4
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011山東濟南,12,3分)如圖,O為原點,點A的坐標(biāo)為(3,0),點B的坐標(biāo)為(0,4),⊙D過A、B、O三點,點C為上一點(不與O、A兩點重合),則cosC的值為( 。

 

A.            B.       C.                    D.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011山東濟南,12,3分)如圖,O為原點,點A的坐標(biāo)為(3,0),點B的坐標(biāo)為(0,4),⊙D過A、B、O三點,點C為上一點(不與O、A兩點重合),則cosC的值為( 。

 

A.            B.       C.                    D.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年遼寧省盤錦市中考模擬(二)數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,O為原點,點A的坐標(biāo)為(3,0),點B的坐標(biāo)為(0,4),⊙D過A、B、O三點,點C為優(yōu)弧ABO上的一點(不與O、A兩點重合),則cosC的值為

A.              B.             C.            D.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(云南曲靖卷)數(shù)學(xué) 題型:選擇題

(2011山東濟南,12,3分)如圖,O為原點,點A的坐標(biāo)為(3,0),點B的坐標(biāo)為(0,4),⊙D過A、B、O三點,點C為上一點(不與O、A兩點重合),則cosC的值為( 。

 

A.             B.        C.                    D.

 

查看答案和解析>>

同步練習(xí)冊答案