如圖所示,正五邊形ABCDE的邊長為1,⊙B過五邊形的頂點A、C,則劣弧AC的長為 .
科目:初中數(shù)學(xué) 來源: 題型:
【提出問題】
(1)如圖1,在等邊△ABC中,點M是BC上的任意一點(不含端點B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.
【類比探究】
(2)如圖2,在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請說明理由.
【拓展延伸】
(3)如圖3,在等腰△ABC中,BA=BC,點M是BC上的任意一點(不含端點B、C),連結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
把一塊直尺與一塊三角板如圖放置,若∠1=40°,則∠2的度數(shù)為( 。
A.125° B.120° C.140° D.130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知函數(shù)y=﹣x+4的圖象與函數(shù)的圖象在同一坐標(biāo)系內(nèi).函數(shù)y=﹣x+4的圖象如圖1與坐標(biāo)軸交于A、B兩點,點M(2,m)是直線AB上一點,點N與點M關(guān)于y軸對稱,線段MN交y軸于點C.
(1)m= ,S△AOB= ;
(2)如果線段MN被反比例函數(shù)的圖象分成兩部分,并且這兩部分長度的比為1:3,求k的值;
(3)如圖2,若反比例函數(shù)圖象經(jīng)過點N,此時反比例函數(shù)上存在兩個點E(x1,y1)、F(x2,y2)關(guān)于原點對稱且到直線MN的距離之比為1:3,若x1<x2請直接寫出這兩點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,過點A與x軸平行的直線交拋物線y=于點B、C,線段BC的長度為6,拋物線y=﹣2x2+b與y軸交于點A,則b=( 。
A.1 B.4.5 C.3 D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,小聰在作線段AB的垂直平分線時,他是這樣操作的:分別以A和B為圓心,大于AB的長為半徑畫弧,兩弧相交于C、D,則直線CD即為所求.根據(jù)他的作圖方法可知四邊形ADBC一定是( )
A.矩形 B.菱形 C.正方形 D.等腰梯形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com