精英家教網 > 初中數學 > 題目詳情
如圖,△ABC中,∠ACB=90°,∠A=40°,以C為圓心、CB為半徑的圓交AB于點D,則∠ACD=    度.
【答案】分析:根據三角形的內角和定理可求得∠B的度數,根據等邊對等角及三角形內角和定理可求得∠BCD的度數,從而不難求得∠ACD的度數.
解答:解:∵△ABC中,∠ACB=90°,∠A=40°
∴∠B=50°
∵BC=CD
∴∠B=∠BDC=50°
∴∠BCD=80°
∴∠ACD=10°.
點評:本題主要考查三角形的內角和定理,以及等腰三角形的性質,等邊對等角.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數;
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案