【題目】如圖,四邊形ABCD中,∠BAD=110°,∠B=∠D=90°,在BC、CD上分別找一點M、N,使△AMN周長最小,此時∠MAN的度數(shù)為_________°.
【答案】40
【解析】
根據(jù)要使△AMN的周長最小,即利用點的對稱,使三角形的三邊在同一直線上,作出A關(guān)于BC和CD的對稱點A′,A″,即可得出∠AA′M+∠A″=∠HAA′=70°,進而得出∠MAB+∠NAD=70°,即可得出答案.
解:作A關(guān)于BC和CD的對稱點A′,A″,連接A′A″,交BC于M,交CD于N,則A′A″即為△AMN的周長最小值,如圖:
∵∠DAB=110°,
∴∠HAA′=70°,
∴∠AA′M+∠A″=∠HAA′=70°,
∵∠MA′A=∠MAB,∠NAD=∠A″,
∴∠MAB+∠NAD=70°,
∴∠MAN=110°70°=40°,
故答案為40.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點,A(m,n+1),B(m+2,n).
(1)當(dāng)m=1,n=2時.如圖1,連接AB、AO、BO.直接寫出△ABO的面積為 .
(2)如圖2,若點A在第二象限、點B在第一象限,連接AB、AO、BO,AB交y軸于H,△ABO的面積為2.求點H的坐標(biāo).
(3)若點A、B在第一象限,在y 軸正半軸上存在點C,使得∠CAB=900,且CA=AB,求m的值,及OC的長(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是矩形的對角線的交點,、、、分別是、、、上的點,且.
求證:四邊形是矩形;
若、、、分別是、、、的中點,且,,求矩形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,并完成任務(wù)。
箏形的定義:兩組鄰邊分別相等的四邊形叫做箏形,幾何圖形的定義通?勺鳛閳D形的性質(zhì)也可以作為圖形的判定方法.也就是說,如圖,若四邊形ABCD是一個箏形,則AB=AD,BC=CD;若AB=AD,BC=CD,則四邊形ABCD是箏形.
如圖,四邊形ABCD是一個箏形,其中AB=AD,BC=CD.對角線AC,BD相交于點O,過點0作0M⊥AB,ON⊥AD,垂足分別為M,N.求證:四邊形AMON是箏形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形 ABCD 的對角線 AC 與 BD 相交于點 O,CE∥BD, DE∥AC , AD=2, DE=2,則四邊形 OCED 的面積為( 。
A. 2 B. 4 C. 4 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級同學(xué)到距學(xué)校6千米的郊外秋游,一部分同學(xué)步行,另一部分同學(xué)騎自行車,沿相同路線前往,如圖分別表示步行和騎車的同學(xué)前往目的地所走的路程y(千米)與所用時間(分鐘)之間的函數(shù)關(guān)系,則以下判斷錯誤的是 ( )
A.騎車的同學(xué)比步行的同學(xué)晚出發(fā)30分鐘
B.騎車的同學(xué)比步行的同學(xué)早6分鐘到達目的地
C.騎車的同學(xué)從出發(fā)到追上步行的同學(xué)用了20分鐘
D.步行同學(xué)的速度是6千米/小時,騎車同學(xué)的速度是千米/小時.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】凸四邊形的四個頂點滿足:每一個頂點到其他三個頂點距離之積都相等.則四邊形一定是( )
A. 正方形 B. 菱形 C. 等腰梯形 D. 矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△DEF中,滿足AB=DE,∠B=∠E,如果要判定這兩個三角形全等,那么添加的條件不正確的是( )
A. ∠A=∠D B. ∠C=∠F C. BC=EF D. AC=DF
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com