如圖,已知△ABC是直角三角形,∠C=90°,DA⊥AB.欲使△ABC與△DBA相似,除了添加角上的條件如∠ABC=∠DBA外,還可添加一個(gè)關(guān)于邊的條件是________.(只需填寫(xiě)一個(gè)你認(rèn)為符合要求的條件)


分析:若是兩個(gè)三角形里面有兩組邊對(duì)應(yīng)成比例,夾角相等,那么這兩個(gè)三角形互為相似三角形.
解答:∵=,∠C=∠DAB,
∴△ABC與△DBA相似.
故答案為:=
點(diǎn)評(píng):本題考查相似三角形的判定定理,兩組對(duì)應(yīng)邊成比例,夾角相等的兩個(gè)三角形互為相似三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC是邊長(zhǎng)為4的正三角形,AB在x軸上,點(diǎn)C在第一象限,AC與y軸交于點(diǎn)D,點(diǎn)A精英家教網(wǎng)的坐標(biāo)為(-1,0).
(1)寫(xiě)出B,C,D三點(diǎn)的坐標(biāo);
(2)若拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)B,C,D三點(diǎn),求此拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,AB交⊙O于點(diǎn)D,DE⊥AC于點(diǎn)E.
(1)求證:DE為⊙O的切線(xiàn).
(2)已知DE=3,求:弧BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,E是AC延長(zhǎng)線(xiàn)上一點(diǎn),選擇一點(diǎn)D,使得△CDE是等邊三角形,如果M是線(xiàn)段AD的中點(diǎn),N是線(xiàn)段BE的中點(diǎn),
求證:△CMN是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•襄城區(qū)模擬)如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長(zhǎng)至點(diǎn)F,使EF=AE,連接AF、BE和CF.
(1)求證:△BCE≌△FDC;
(2)判斷四邊形ABDF是怎樣的四邊形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•奉賢區(qū)二模)如圖,已知△ABC是等邊三角形,點(diǎn)D是BC延長(zhǎng)線(xiàn)上的一個(gè)動(dòng)點(diǎn),以AD為邊作等邊△ADE,過(guò)點(diǎn)E作BC的平行線(xiàn),分別交AB,AC的延長(zhǎng)線(xiàn)于點(diǎn)F,G,聯(lián)結(jié)BE.
(1)求證:△AEB≌△ADC;
(2)如果BC=CD,判斷四邊形BCGE的形狀,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案