【題目】新學期伊始,學校聯(lián)系廠家出售作業(yè)本,若學生在學校購買每個作業(yè)本1.5元,去校外的商店購買每個作業(yè)本2元.學校對學生一學期使用作業(yè)本的數(shù)量進行了調(diào)查,收集了30個學生一學期使用作業(yè)本的數(shù)據(jù),整理繪制成如圖的條形統(tǒng)計圖:
若學校在開學時要求每位學生在校一次性購買18個作業(yè)本,設(shè)x表示學生本學期使用作業(yè)本的數(shù)量,y表示購買作業(yè)本的費用(單位:元).
(1)寫出x≤18和x>18時,y與x的函數(shù)關(guān)系式;
(2)在上述頻數(shù)直方圖中,當使用作業(yè)本的頻率不小于0.5時,最少需要購買幾個作業(yè)本;
(3)利用上述頻數(shù)直方圖,計算這30名學生平均使用作業(yè)本的費用.
【答案】
(1)解:當x≤18時,y=18×1.5=27(元).
當x>18時,y=18×1.5+2(x﹣18)=2x﹣9;
(2)解:如圖,使用16個作業(yè)本有2人,頻率為: .
使用17個作業(yè)本有6人,頻率為: .
使用10個作業(yè)本有2人,頻率為: .
∵ + = <0.5,
+ + =0.6>0.5,
∴最少購買18個作業(yè)本;
(3)解: = [16×1.5×2+17×1.5×6+18×1
.5×10+18×1.5×8+18×1.5×4+(19﹣18)×2+(20﹣18)×2]=26.7(元).
答:這30名學生平均使用作業(yè)本的費用為26.7元.
【解析】(1)當x≤18時,購買作業(yè)本的熟練為18,然后依據(jù)總價=單價×數(shù)量求解即可;當x>0,依據(jù)y=校內(nèi)費用+校外費用求解即可;
(2)先求得各條形所占的頻率,然后在依據(jù)使用作業(yè)本的頻率不小于0.5求解即可;
(3)依據(jù)加權(quán)平均數(shù)公式進行計算即可.
【考點精析】解答此題的關(guān)鍵在于理解頻數(shù)分布直方圖的相關(guān)知識,掌握特點:①易于顯示各組的頻數(shù)分布情況;②易于顯示各組的頻數(shù)差別.(注意區(qū)分條形統(tǒng)計圖與頻數(shù)分布直方圖).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某飛機于空中A處探測到目標C,此時飛行高度AC=1200m,從飛機上看地平面指揮臺B的俯角α=16°31′,則飛機A與指揮臺B的距離等于(結(jié)果保留整數(shù))(參考數(shù)據(jù)sin16°31′=0.28,cos16°31′=0.95,tan16°31′=0.30)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知矩形OABC的三個頂點A(0,10),B(8,10),C(8,0),過O、C兩點的拋物線y=ax2+bx+c與線段AB交于點D,沿直線CD折疊矩形OABC的一邊BC,使點B落在OA邊上的點E處.
(1)求AD的長及拋物線的解析式;
(2)一動點P從點E出發(fā),沿EC以每秒2個單位長的速度向點C運動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長的速度向點O運動,當點P運動到點C時,兩點同時停止運動.設(shè)運動時間為t秒.請問當t為何值時,以P、Q、C為頂點的三角形是等腰三角形?
(3)若點N在拋物線對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使以M、N、C、E為頂點四邊形是平行四邊形?若存在,請直接寫出點M與點N的坐標(不寫求解過程);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以A(2,0),B(0,t)為頂點作等腰直角△ABC(其中∠ABC=90°,且點C落在第一象限內(nèi)),則點C關(guān)于y軸的對稱點C’的坐標為___.(用t的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】空氣質(zhì)量狀況已引起全社會的廣泛關(guān)注,某市統(tǒng)計了2013年每月空氣質(zhì)量達到良好以上的天數(shù),整理后制成如下折線統(tǒng)計圖和扇形統(tǒng)計圖.
根據(jù)以上信息解答下列問題:
(1)該市2013年每月空氣質(zhì)量達到良好以上天數(shù)的中位數(shù)是天,眾數(shù)是天;
(2)求扇形統(tǒng)計圖中扇形A的圓心角的度數(shù);
(3)根據(jù)以上統(tǒng)計圖提供的信息,請你簡要分析該市的空氣質(zhì)量狀況(字數(shù)不超過30字).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】Rt△ABC中,AB=AC,點D為BC中點.∠MDN=900,∠MDN繞點D旋轉(zhuǎn),DM、DN分別與邊AB、AC交于E、F兩點.下列結(jié)論
①(BE+CF)=BC,②,③AD·EF,④AD≥EF,⑤AD與EF可能互相平分,
其中正確結(jié)論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為等邊三角形,點D,E分別在AC,BC上,且AD=CE,AE與BD相交于點P,BF⊥AE于點F.若PF=2,則BP=( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在校園文化建設(shè)中,某學校原計劃按每班5幅訂購了“名人字畫”共90幅.由于新學期班數(shù)增加,決定從閱覽室中取若干幅“名人字畫”一起分發(fā),如果每班分4幅,則剩下17幅;如果每班分5幅,則最后一班不足3幅,但不少于1幅.
(1)該校原有的班數(shù)是多少個?
(2)新學期所增加的班數(shù)是多少個?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com