【題目】如圖,在平行四邊形ABCD中,點(diǎn)A、B、C的坐標(biāo)分別是(1,0)、(3,1)、(3,3),雙曲線y=(k≠0,x>0)過點(diǎn)D.
(1)寫出D點(diǎn)坐標(biāo);
(2)求雙曲線的解析式;
(3)作直線AC交y軸于點(diǎn)E,連結(jié)DE,求△CDE的面積.
【答案】(1)點(diǎn)D的坐標(biāo)是(1,2);(2)雙曲線的解析式是:y=;(3)△CDE的面積是3.
【解析】
(1)根據(jù)平行四邊形對(duì)邊相等的性質(zhì),將線段長度轉(zhuǎn)化為點(diǎn)的坐標(biāo)即可;
(2)求出點(diǎn)的坐標(biāo)后代入反比例函數(shù)解析式求解即可;
(3)觀察圖形,可用割補(bǔ)法將分成與兩部分,以為底,分別以到的距離和到的距離為高求解即可.
解:(1)∵在平行四邊形ABCD中,點(diǎn)A、B、C的坐標(biāo)分別是(1,0)、(3,1)、(3,3),
∴點(diǎn)D的坐標(biāo)是(1,2),
(2)∵雙曲線y=(k≠0,x>0)過點(diǎn)D(1,2),
∴2=,得k=2,
即雙曲線的解析式是:y=;
(3)∵直線AC交y軸于點(diǎn)E,點(diǎn)A、B、C的坐標(biāo)分別是(1,0)、(3,1)、(3,3),點(diǎn)D的坐標(biāo)是(1,2),
∴AD=2,點(diǎn)E到AD的距離為1,點(diǎn)C到AD的距離為2,
∴S△CDE=S△EDA+S△ADC==1+2=3,
即△CDE的面積是3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時(shí)出發(fā),勻速行駛.設(shè)行駛的時(shí)間為x(時(shí)),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至快車到達(dá)乙地過程中y與x之間的函數(shù)關(guān)系.已知兩車相遇時(shí)快車比慢車多行駛60千米.若快車從甲地到達(dá)乙地所需時(shí)間為t時(shí),則此時(shí)慢車與甲地相距_____千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC和△ADE均為等邊三角形,點(diǎn)D在BC邊上,DE與AC相交于點(diǎn)F,圖中相似的三角形有( 。⿲(duì).
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象交于第二、四象限A、B兩點(diǎn),過點(diǎn)A作AD⊥x軸于D,AD=4,sin∠AOD=,且點(diǎn)B的坐標(biāo)為(n,﹣2).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)請(qǐng)直接寫出滿足kx+b>的x的取值范圍;
(3)E是y軸上一點(diǎn),且△AOE是等腰三角形,請(qǐng)直接寫出所有符合條件的E點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AC與⊙O相切于點(diǎn)A,點(diǎn)B為⊙O上一點(diǎn),且OC⊥OB于點(diǎn)O,連接AB交OC于點(diǎn)D.
(1)求證:AC=CD;
(2)若AC=3,OB=4,求OD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD,將△AMP和△BPQ分別沿PM和PQ折疊(AP>AM),點(diǎn)A和點(diǎn)B都與點(diǎn)E重合;再將△CQD沿DQ折疊,點(diǎn)C落在線段EQ上點(diǎn)F處.
(1)判斷△AMP,△BPQ,△CQD和△FDM中有哪幾對(duì)相似三角形?(不需說明理由)
(2)如果AM=1,sin∠DMF=,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣4經(jīng)過A(﹣3,0),B(5,﹣4)兩點(diǎn),與y軸交于點(diǎn)C,連接AB,AC,BC.
(1)求拋物線的表達(dá)式;
(2)求△ABC的面積;
(3)拋物線的對(duì)稱軸上是否存在點(diǎn)M,使得△ABM是直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是⊙O的直徑,AB是⊙O的弦,CD⊥AB,垂足為E,連接BC、BD.點(diǎn)F為線段CB上一點(diǎn),連接DF,若CE=2,AB=8,BF=,則tan∠CDF=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)二次函數(shù)圖象上部分點(diǎn)的橫坐標(biāo)x與縱坐標(biāo)y的對(duì)應(yīng)值如下表所示:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … |
y | … | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | … |
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)在給定的平面直角坐標(biāo)系中畫出這個(gè)二次函數(shù)的圖象;
(3)當(dāng)4<x<1時(shí),直接寫出y的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com