【題目】已知∠AOB90°,在∠AOB的平分線OM上有一點(diǎn)C,將一個(gè)三角板的直角頂點(diǎn)與C重合,它的兩條直角邊分別與OA,OB(或它們的反向延長(zhǎng)線)相交于點(diǎn)D,E.

當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到CDOA垂直時(shí)(如圖①),易證:ODOEOC;

當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到CDOA不垂直時(shí),即在圖②,圖③這兩種情況下,上述結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,線段ODOE,OC之間又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,不需證明.

  

【答案】圖②中OD+OE=OC成立.證明見解析;圖③不成立,有數(shù)量關(guān)系:OE-OD=OC

【解析】試題分析:當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到CD與OA不垂直時(shí),易得△CKD≌△CHE,進(jìn)而可得出證明;判斷出結(jié)果.解此題的關(guān)鍵是根據(jù)題意找到全等三角形或等價(jià)關(guān)系,進(jìn)而得出OC與OD、OE的關(guān)系;最后轉(zhuǎn)化得到結(jié)論.

試題解析:圖②中OD+OE=OC成立.

證明:過(guò)點(diǎn)C分別作OA,OB的垂線,垂足分別為P,Q.

有△CPD≌△CQE,

∴DP=EQ,

∵OP=OD+DP,OQ=OE-EQ,

又∵OP+OQ=OC,

即OD+DP+OE-EQ=OC,

∴OD+OE=OC.

圖③不成立,

有數(shù)量關(guān)系:OE-OD=OC

過(guò)點(diǎn)C分別作CK⊥OA,
CH⊥OB,
∵OC為∠AOB的角平分線,且CK⊥OA,CH⊥OB,
∴CK=CH,∠CKD=∠CHE=90°,
又∵∠KCD與∠HCE都為旋轉(zhuǎn)角,
∴∠KCD=∠HCE,
∴△CKD≌△CHE,
∴DK=EH,
∴OE-OD=OH+EH-OD=OH+DK-OD=OH+OK,
由(1)知:OH+OK=OC,
∴OD,OE,OC滿足OE-OD=OC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,BC20 cm,PQ,MN分別從A,B,C,D出發(fā),沿AD,BC,CB,DA方向在矩形的邊上同時(shí)運(yùn)動(dòng),當(dāng)有一個(gè)點(diǎn)先到達(dá)所在運(yùn)動(dòng)邊的另一個(gè)端點(diǎn)時(shí),運(yùn)動(dòng)即停止.已知在相同時(shí)間內(nèi),若BQx cm(x≠0),則AP2x cm,CM3x cmDNx2 cm,

(1)當(dāng)x為何值時(shí),點(diǎn)P,N重合;

(2)當(dāng)x為何值是,以P,Q,M,N為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點(diǎn),增加下列條件,不能得出BEDF的是( 。

A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=10,BC=4,QAB邊的中點(diǎn),PCD邊上的動(dòng)點(diǎn),且△AQP是腰長(zhǎng)為5的等腰三角形,則CP的長(zhǎng)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉行漢字聽寫比賽,每位學(xué)生聽寫漢字39個(gè)比賽結(jié)束后,隨機(jī)抽查部分學(xué)生的聽寫結(jié)果,以下是根據(jù)抽査結(jié)果繪制的統(tǒng)計(jì)圖的一部分根據(jù)信息解決下列問(wèn)題:

1)樣本容量是 a= ,b= ;

2)在扇形統(tǒng)計(jì)圖中,“D所對(duì)應(yīng)的圓心角的度數(shù)為

3)補(bǔ)全條形統(tǒng)計(jì)圖;

4)該校共有1200名學(xué)生,如果聽寫正確的個(gè)數(shù)少于16個(gè)定為不合格,請(qǐng)你估計(jì)這所學(xué)校本次比賽聽寫不合格的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B兩組卡片共5張,A組的三張分別寫有數(shù)字2,4,6B組的兩張分別寫有3,5.它們除了數(shù)字外沒(méi)有任何區(qū)別,

1隨機(jī)從A組抽取一張,求抽到數(shù)字為2的概率;

2隨機(jī)地分別從A組、B組各抽取一張,請(qǐng)你用列表或畫樹狀圖的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個(gè)游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請(qǐng)問(wèn)這樣的游戲規(guī)則對(duì)甲乙雙方公平嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市公交公司為應(yīng)對(duì)春運(yùn)期間的人流高峰,計(jì)劃購(gòu)買A、B兩種型號(hào)的公交車共10輛,若購(gòu)買A型公交車1輛,B型公交車2輛,共需400萬(wàn)元;若購(gòu)買A型公交車2輛,B型公交車3輛,共需650萬(wàn)元,

(1)試問(wèn)該公交公司計(jì)劃購(gòu)買A型和B型公交車每輛各需多少萬(wàn)元?

(2)若該公司預(yù)計(jì)在某條線路上A型和B型公交車每輛年均載客量分別為60萬(wàn)人次和100萬(wàn)人次.若該公司購(gòu)買A型和B型公交車的總費(fèi)用W不超過(guò)1200萬(wàn)元,且確保這10輛公交車在某條線路的年均載客量總和不少于680萬(wàn)人次,則該公司有哪幾種購(gòu)車方案?哪種購(gòu)車方案的總費(fèi)用W最少?最少總費(fèi)用是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等邊三角形的高為6,在這個(gè)三角形所在的平面內(nèi)有一個(gè)點(diǎn),若點(diǎn)的距離是1,點(diǎn)的距離是2,則點(diǎn)的最小距離與最大距離分別是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖①,拋物線y=ax2+bx+3(a0)與x軸交于點(diǎn)A,0),B(3,0),與y軸交于點(diǎn)C,連接BC

(1)求拋物線的表達(dá)式;

(2)拋物線上是否存在點(diǎn)M,使得△MBC的面積與△OBC的面積相等,若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)點(diǎn)D(2,m)在第一象限的拋物線上,連接BD.在對(duì)稱軸左側(cè)的拋物線上是否存在一點(diǎn)P,滿足∠PBC=∠DBC?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案