如圖所示,已知△ABC和△BDE都是等邊三角形,且A、B、D三點共線.下列結論:①AE=CD;②BF=BG;③HB平分∠AHD;④∠AHC=60°,⑤△BFG是等邊三角形;⑥FG∥AD.其中正確的有


  1. A.
    3個
  2. B.
    4個
  3. C.
    5個
  4. D.
    6個
D
分析:由題中條件可得△ABE≌△CBD,得出對應邊、對應角相等,進而得出△BGD≌△BFE,△ABF≌△CGB,再由邊角關系即可求解題中結論是否正確,進而可得出結論.
解答:∵△ABC與△BDE為等邊三角形,
∴AB=BC,BD=BE,∠ABC=∠DBE=60°,
∴∠ABE=∠CBD,
即AB=BC,BD=BE,∠ABE=∠CBD
∴△ABE≌△CBD,
∴AE=CD,∠BDC=∠AEB,
又∵∠DBG=∠FBE=60°,
∴△BGD≌△BFE,
∴BG=BF,∠BFG=∠BGF=60°,
∴△BFG是等邊三角形,
∴FG∥AD,
∵BF=BG,AB=BC,∠ABF=∠CBG=60°,
∴△ABF≌△CGB,
∴∠BAF=∠BCG,
∴∠CAF+∠ACB+∠BCD=∠CAF+∠ACB+∠BAF=60°+60°=120°,
∴∠AHC=60°,
∵∠FHG+∠FBG=120°+60°=180°,
∴B、G、H、F四點共圓,
∵FB=GB,
∴∠FHB=∠GHB,
∴BH平分∠GHF,
∴題中①②③④⑤⑥都正確.
故選D.
點評:本題主要考查了等邊三角形的性質(zhì)及全等三角形的判定及性質(zhì)問題,能夠熟練掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、如圖所示,已知AB∥CD,EF平分∠CEG,∠1=80°,則∠2的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖所示,已知AB∥CD,分別探索下列四個圖形中∠P與∠A,∠C的關系.要求:(1)、(2)直接寫出結論,(3)、(4)寫出結論并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,已知AB為圓O的直徑,AC為弦,OD∥BC交AC于D,OD=2cm,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,已知AB=AC,BD⊥AC,試說明∠BAC=2∠CBD.

查看答案和解析>>

同步練習冊答案