如圖,正比例函數(shù)y1=x和反比例函數(shù)數(shù)學(xué)公式的圖象都經(jīng)過(guò)點(diǎn)A(1,1).則在第一象限內(nèi),當(dāng)
y1>y2時(shí),x的取值范圍是________.

x>1
分析:根據(jù)圖象可得:要使y1>y2,需圖象y1在圖象y2的上方,據(jù)題干圖象即可得到x的取值范圍.
解答:因?yàn)檎壤瘮?shù)y1=x和反比例函數(shù)的圖象都經(jīng)過(guò)點(diǎn)A(1,1),
故結(jié)合圖象可知,當(dāng)x<1時(shí),y1<y2,
當(dāng)x=1時(shí),y1=y2,
當(dāng)x>時(shí),y1>y2,
故答案為:x>1.
點(diǎn)評(píng):本題主要考查反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題的知識(shí)點(diǎn),解答本題的關(guān)鍵是運(yùn)用好數(shù)形結(jié)合這種解題方法,還要熟練掌握反比例函數(shù)的性質(zhì)等,本題難度一般,是一道比較不錯(cuò)的習(xí)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正比例函數(shù)y1=k1x的圖象與反比例函數(shù)的圖象相交于A(yíng)、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)精英家教網(wǎng)為(1,2).
(1)分別求出這兩個(gè)函數(shù)的表達(dá)式;
(2)請(qǐng)你觀(guān)察圖象,寫(xiě)出y1>y2時(shí),x的取值范圍;
(3)在y軸上是否存在點(diǎn)P,使△AOP為等腰三角形?若存在,請(qǐng)你直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正比例函數(shù)y1=k1x與反比例函數(shù)y2=
k2
x
 相交于A(yíng)、B點(diǎn).已知點(diǎn)A的坐標(biāo)為A(4,n),BD⊥x軸于點(diǎn)D,且S△BDO=4.過(guò)點(diǎn)A的一次函數(shù)y3=k3x+b與反比例函數(shù)的圖象交于另一點(diǎn)C,與x軸交于點(diǎn)E(5,0).
(1)求正比例函數(shù)y1、反比例函數(shù)y2和一次函數(shù)y3的解析式;
(2)結(jié)合圖象,求出當(dāng)k3x+b>
k2
x
>k1x時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州)如圖,正比例函數(shù)y1=k1x和反比例函數(shù)y2=
k2
x
的圖象交于A(yíng)(-1,2)、B(1,-2)兩點(diǎn),若y1<y2,則x的取值范圍是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•紅河州)如圖,正比例函數(shù)y1=x的圖象與反比例函數(shù)y2=
kx
(k≠0)的圖象相交于A(yíng)、B兩點(diǎn),點(diǎn)A的縱坐標(biāo)為2.
(1)求反比例函數(shù)的解析式;
(2)求出點(diǎn)B的坐標(biāo),并根據(jù)函數(shù)圖象,寫(xiě)出當(dāng)y1>y2時(shí),自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正比例函數(shù)y1=k1x和反比例函數(shù)y2=
k2x
的圖象交于A(yíng)(-1,2)、B(1,-2)兩點(diǎn),若y1<y2,則x的取值范圍是
-1<x<0或x>1
-1<x<0或x>1

查看答案和解析>>

同步練習(xí)冊(cè)答案