【題目】某公司開(kāi)發(fā)一種新的節(jié)能產(chǎn)品,工作人員對(duì)銷售情況進(jìn)行了調(diào)查,圖中折線表示月銷售量()與銷售時(shí)間()之間的函數(shù)關(guān)系,已知線段表示函數(shù)關(guān)系中,時(shí)間每增加天,月銷售量減少件,求間的函數(shù)表達(dá)式.

【答案】

【解析】

由時(shí)間每增加1天日銷售量減少5件結(jié)合第18天的日銷售量為360件,即可求出第19天的日銷售量,再根據(jù)點(diǎn)的坐標(biāo),利用待定系數(shù)法可求出直線OD、DE的函數(shù)關(guān)系式,即可找出yx之間的函數(shù)關(guān)系式;

當(dāng)時(shí),

設(shè)直線OD的解析式為

代入得,

∴直線OD的解析式為:,

當(dāng)時(shí),

根據(jù)題意“時(shí)間每增加天,月銷售量減少件”,則第19天的日銷售量為:360-5=355,

設(shè)直線DE的解析式為,

代入得,

解得:,

∴直線DE的解析式為,

間的函數(shù)表達(dá)式為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC60°,DAB上一點(diǎn),ACBDPCD中點(diǎn).求證:APBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC90°,對(duì)角線AC、BD交于點(diǎn)OAOCO,CDBD,如果CD3,BC5,那么AB_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,如果某點(diǎn)的橫坐標(biāo)與縱坐標(biāo)的和為10,則稱此點(diǎn)為合適點(diǎn)例如,點(diǎn)(1,9),(﹣20192029都是合適點(diǎn)

1)求函數(shù)y2x+1的圖象上的合適點(diǎn)的坐標(biāo);

2)求二次函數(shù)yx25x2的圖象上的兩個(gè)合適點(diǎn)A,B之間線段的長(zhǎng);

3)若二次函數(shù)yax2+4x+c的圖象上有且只有一個(gè)合適點(diǎn),其坐標(biāo)為(4,6),求二次函數(shù)yax2+4x+c的表達(dá)式;

4)我們將拋物線y2xn23x軸下方的圖象記為G1,在x軸及x軸上方圖象記為G2,現(xiàn)將G1沿x軸向上翻折得到G3,圖象G2和圖象G3兩部分組成的記為G,當(dāng)圖象G上恰有兩個(gè)合適點(diǎn)時(shí),直接寫(xiě)出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠B=∠C44°,點(diǎn)D點(diǎn)E分別從點(diǎn)B、點(diǎn)C同時(shí)出發(fā),在線段BC上作等速運(yùn)動(dòng),到達(dá)C點(diǎn)、B點(diǎn)后運(yùn)動(dòng)停止.

1)求證:ABE≌△ACD;

2)若ABBE,求∠DAE的度數(shù);

3)若ACE的外心在其內(nèi)部時(shí),求∠BDA的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,3),B(-41),C(-1,2)

1)畫(huà)出以點(diǎn)O為旋轉(zhuǎn)中心,將ABC順時(shí)針旋轉(zhuǎn)90°得到A'B'C'

2)求點(diǎn)C在旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B,C,D在⊙O上,AB=AC,∠A=40°,CDAB,若⊙O的半徑為2,則圖中陰影部分的面積是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:同時(shí)經(jīng)過(guò)x軸上兩點(diǎn)A,Bmn)的兩條拋物線稱為同弦拋物線.如拋物線C1與拋物線C2是都經(jīng)過(guò),的同弦拋物線.

1)引進(jìn)一個(gè)字母,表達(dá)出拋物線C1的所有同弦拋物線;

2)判斷拋物線C3與拋物線C1是否為同弦拋物線,并說(shuō)明理由;

3)已知拋物線C4C1的同弦拋物線,且過(guò)點(diǎn),求拋物線C對(duì)應(yīng)函數(shù)的最大值或最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為營(yíng)造安全出行的良好交通氛圍,實(shí)時(shí)監(jiān)控道路交迸,某市交管部門(mén)在路口安裝的高清攝像頭如圖所示,立桿MA與地面AB垂直,斜拉桿CDAM交于點(diǎn)C,橫桿DEAB,攝像頭EFDE于點(diǎn)E,AC=55,CD=3,EF=0.4,CDE=162°。

(1)求∠MCD的度數(shù);

(2)求攝像頭下端點(diǎn)F到地面AB的距離。(精確到百分位)

(參考數(shù)據(jù);sin72°=0.95,cos72°≈0.31,tan72°=3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)

查看答案和解析>>

同步練習(xí)冊(cè)答案