【題目】如圖,在Rt△ABC中,∠B=90°,AC=40cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以2cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以1cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是a秒(0<a≤20).過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的a值;如果不能,請(qǐng)說(shuō)明理由;
(2)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.
【答案】(1)能,當(dāng)t=秒時(shí),四邊形AEFD為菱形;(2)當(dāng)t=16或10秒時(shí),△DEF為直角三角形,理由見(jiàn)解析
【解析】
(1)能.首先證明四邊形AEFD為平行四邊形,當(dāng)AE=AD時(shí),四邊形AEFD為菱形,即40-4t=2t,解方程即可解決問(wèn)題;
(2)分三種情形討論即可.
(1)證明:能.
理由如下:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,
∴DF=t,
又∵AE=t,
∴AE=DF,
∵AB⊥BC,DF⊥BC,
∴AE∥DF,
又∵AE=DF,
∴四邊形AEFD為平行四邊形,
當(dāng)AE=AD時(shí),四邊形AEFD為菱形,
即40-2t=t,解得t= .
∴當(dāng)t=秒時(shí),四邊形AEFD為菱形.
(2)①當(dāng)∠DEF=90°時(shí),由(1)知四邊形AEFD為平行四邊形,
∴EF∥AD,
∴∠ADE=∠DEF=90°,
∵∠A=60°,
∴∠AED=30°,
∴AD=AE=,
又AD=40-2t,即40-2t=,解得t=16;
②當(dāng)∠EDF=90°時(shí),四邊形EBFD為矩形,在Rt△AED中∠A=60°,則∠ADE=30°,
∴AD=2AE,即40-2t=2t,解得t=10.
③若∠EFD=90°,則E與B重合,D與A重合,此種情況不存在.
綜上所述,當(dāng)t=16或10秒時(shí),△DEF為直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.
(1)直接寫出C點(diǎn)的坐標(biāo);
(2)求拋物線的解析式;
(3)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),已知.
(1)點(diǎn)A的坐標(biāo)為(____,______);
(2)將繞點(diǎn)順時(shí)針旋轉(zhuǎn)度.
①當(dāng)時(shí),點(diǎn)恰好落在反比例函數(shù)的圖象上,求的值;
②在旋轉(zhuǎn)過(guò)程中,點(diǎn)能否同時(shí)落在上述反比例函數(shù)的圖象上,若能,求出的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C,E,F(xiàn),B在同一直線上,點(diǎn)A,D在BC異側(cè),AB∥CD,AE=DF,∠A=∠D.
(1)求證:AB=CD;
(2)若AB=CF,∠B=30°,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(20,0),C(0,8),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在邊BC上運(yùn)動(dòng),當(dāng)△ODP是以OD為腰的等腰三角形時(shí),則P點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC 中,∠C=90°,∠BAC 的平分線 AD 交 BC于點(diǎn) D,過(guò)點(diǎn) D 作 DE⊥AD 交 AB 于點(diǎn) E,以 AE 為直徑作⊙O.
(1)求證:BC 是⊙O 的切線;
(2)若 AC=3,BC=4,求 BE 的長(zhǎng).
(3)在(2)的條件中,求 cos∠EAD 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知中, , , ,D是AB邊的中點(diǎn),E是AC邊上一點(diǎn),聯(lián)結(jié)DE,過(guò)點(diǎn)D作交BC邊于點(diǎn)F,聯(lián)結(jié)EF.
(1)如圖1,當(dāng)時(shí),求EF的長(zhǎng);
(2)如圖2,當(dāng)點(diǎn)E在AC邊上移動(dòng)時(shí), 的正切值是否會(huì)發(fā)生變化,如果變化請(qǐng)說(shuō)出變化情況;如果保持不變,請(qǐng)求出的正切值;
(3)如圖3,聯(lián)結(jié)CD交EF于點(diǎn)Q,當(dāng)是等腰三角形時(shí),請(qǐng)直接寫出BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中考體育測(cè)試前,某區(qū)教育局為了了解選報(bào)引體向上的初三男生的成績(jī)情況,隨機(jī)抽測(cè)了本區(qū)部分選報(bào)引體向上項(xiàng)目的初三男生的成績(jī),并將測(cè)試得到的成績(jī)繪成了下面兩幅不完整的統(tǒng)計(jì)圖:
請(qǐng)你根據(jù)圖中的信息,解答下列問(wèn)題:
(1)補(bǔ)全條形圖;
(2)直接寫出在這次抽測(cè)中,測(cè)試成績(jī)的眾數(shù)和中位數(shù);
(3)該區(qū)體育中考選報(bào)引體向上的男生共有1800人,如果體育中考引體向上達(dá)6個(gè)以上(含6個(gè))得滿分,請(qǐng)你估計(jì)該區(qū)體育中考中選報(bào)引體向上的男生能獲得滿分的有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與直線經(jīng)過(guò)點(diǎn),且相交于另一點(diǎn),拋物線與軸交于點(diǎn),與軸交于另一點(diǎn),過(guò)點(diǎn)的直線交拋物線于點(diǎn),且軸,連接,當(dāng)點(diǎn)在線段上移動(dòng)時(shí)(不與、重合),下列結(jié)論正確的是( )
A.B.
C.D.四邊形的最大面積為13
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com