【題目】如圖,在△ABC中,兩條中線BE、CD相交于點O,則S△ADE:S△COE= .
【答案】2:1
【解析】解:∵在△ABC中,兩條中線BE、CD相交于點O,
∴DE為中位線,
∴DE∥BC,DE= BC,
∴△ADE∽△ABC,△DOE∽△COB,
∴S△ADE:S△ABC=1:4,S△DOE:S△COB=1:4,
∵OD:OC=1:2,
∴S△DOE:S△COE=1:2,S△DOB:S△COB=1:2,
∴S△COE= S四邊形DBCE,
則S△ADE:S△COE=2:1.
所以答案是:2:1
【考點精析】解答此題的關鍵在于理解三角形中位線定理的相關知識,掌握連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半,以及對相似三角形的判定與性質的理解,了解相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數學 來源: 題型:
【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是( )
A. BE=DF B. AE=CF C. AF//CE D. ∠BAE=∠DCF
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點 E 在 AD 的延長線上,下列條件中能判斷 AB∥CD 的是( )
A. ∠1=∠4B. ∠2=∠3C. ∠C=∠CDED. ∠C+∠CDA=180°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,CD⊥AB于D,點E為AC上一動點,過點E作EF⊥AB于F,連接DE.
(1)若∠1=∠2,求證:DE∥BC;
(2)在點E運動過程中,直線DE與直線BC交于點M,若∠DCB=α,∠M=β,則∠FED的度為 (用含α,β的式子表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】平面直角坐標系中,點A坐標為(a,0),點B坐標為(b,2),點C坐標為(c,m),其中a、b、c滿足方程組.
(1)若a=2,則三角形AOB的面積為 ;
(2)若點B到y軸的距離是點C到y軸距離的2倍,求a的值;
(3)連接AB、AC、BC,若三角形ABC的面積小于等于9,求m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】溫州某學校搬遷,教師和學生的寢室數量在增加,若該校今年準備建造三類不同的寢室,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因實際需要,單人間的數量在20至于30之間(包括20和30),且四人間的數量是雙人間的5倍.
(1)若2015年學校寢室數為64個,2017年建成后寢室數為121個,求2015至2017年的平均增長率;
(2)若建成后的寢室可供600人住宿,求單人間的數量;
(3)若該校今年建造三類不同的寢室的總數為180個,則該校的寢室建成后最多可供多少師生住宿?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的袋子中裝有紅、黑、白三種球共個,他們除了顏色外其余完全一樣. 已知黑球是白球的倍少個,將球充分攪勻后,隨機摸出一球是紅球的概率是
(1)這三種球各有多少個?
(2)隨機摸出一球是白球的概率是多少?
(3)若從袋子中拿出個球(沒有紅球)后,隨機摸一次摸到紅球的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩家商店出售同樣的茶壺和茶杯,茶壺每只定價都是20元,茶杯每只定價都是5元.兩家商店的優(yōu)惠辦法不同:甲商店是購買1只茶壺贈送1只茶杯;乙商店是按售價的92%收款.某顧客需購買4只茶壺、若干只(超過4只)茶杯,去哪家商店購買優(yōu)惠更多?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,“中國海監(jiān)50”正在南海海域A處巡邏,島礁B上的中國海軍發(fā)現點A在點B的正西方向上,島礁C上的中國海軍發(fā)現點A在點C的南偏東30°方向上,已知點C在點B的北偏西60°方向上,且B,C兩地相距120海里.
(1)求出此時點A到島礁C的距離;
(2)若“中海監(jiān)50”從A處沿AC方向向島礁C駛去,當到達點A′時,測得點B在A′的南偏東75°的方向上,求此時“中國海監(jiān)50”的航行距離.(注:結果保留根號)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com