【題目】解方程

(用配方法解方程)

【答案】1;(2;(3;(4)無(wú)解

【解析】

1)二次項(xiàng)的系數(shù)化為1,移項(xiàng)、配方、開(kāi)方即可求解;

2)先移項(xiàng),再提取公因式(x5),進(jìn)而得出答案;

3)觀察可得最簡(jiǎn)公分母是(x3)(x1),方程兩邊乘最簡(jiǎn)公分母,可以把分式方程轉(zhuǎn)化為整式方程求解即可;

4)觀察可得最簡(jiǎn)公分母是(x1)(x1),方程兩邊乘最簡(jiǎn)公分母,可以把分式方程轉(zhuǎn)化為整式方程求解即可.

解:(1

;

2

3)兩邊同時(shí)乘以(x3)(x1)得

解得:

檢驗(yàn):當(dāng)時(shí),(x3)(x1)≠0,

是原方程的解;

4)兩邊同時(shí)乘以(x1)(x1)得

解得:

檢驗(yàn):當(dāng)x1時(shí),(x1)(x1)=0,

是原方程的增根,原方程無(wú)解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,菱形中,、分別是邊上的點(diǎn),且

1)求證:

2)如圖2,延長(zhǎng)線上,且,求證:

3)如圖3,在(2)的條件下,,,的中點(diǎn),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】尺規(guī)作圖:作點(diǎn)A關(guān)于直線l的對(duì)稱(chēng)點(diǎn)A'.

已知:直線l和l外一點(diǎn)A.

求作:點(diǎn)A關(guān)于l的對(duì)稱(chēng)點(diǎn)A'.

作法:①在l上任取一點(diǎn)P,以點(diǎn)P為圓心,PA長(zhǎng)為半徑作孤,交l于點(diǎn)B;②以點(diǎn)B為圓心,AB長(zhǎng)為半徑作弧,交弧AB于點(diǎn)A'. 點(diǎn)A'就是所求作的對(duì)稱(chēng)點(diǎn).

由步驟①,得________

由步驟②,得________

將橫線上的內(nèi)容填寫(xiě)完整,并說(shuō)明點(diǎn)A與A'關(guān)于直線l對(duì)稱(chēng)的理由________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某“欣欣”奶茶店開(kāi)業(yè)大酬賓推出四款飲料.千克飲料的原料是千克蘋(píng)果,千克梨,千克西瓜;1千克飲料的原料是千克蘋(píng)果,千克梨,千克西瓜;千克飲料的原料是千克蘋(píng)果,千克梨, 千克西瓜;千克飲料的原料是千克蘋(píng)果,千克梨,千克西瓜;如果每千克蘋(píng)果的成本價(jià)為元,每千克梨的成本價(jià)為元,每千克西瓜的成本價(jià)為元.開(kāi)業(yè)當(dāng)天全部售罄,銷(xiāo)售后,共計(jì)蘋(píng)果的總成本為元,并且梨的總成本為元,那么西瓜的總成本為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,正比例函數(shù)y=x的圖象經(jīng)過(guò)點(diǎn)A,點(diǎn)A的縱坐標(biāo)為4,反比例函數(shù)y=的圖象也經(jīng)過(guò)點(diǎn)A,第一象限內(nèi)的點(diǎn)B在這個(gè)反比例函數(shù)的圖象上,過(guò)點(diǎn)BBCx軸,交y軸于點(diǎn)C,且AC=AB.求:

(1)這個(gè)反比例函數(shù)的解析式;

(2)直線AB的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知是線段上任意一點(diǎn)(端點(diǎn)除外),分別以為邊,并且在的同一側(cè)作等邊和等邊,連結(jié),連結(jié),給出以下三個(gè)結(jié)論:

,其中結(jié)論正確的個(gè)數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線l與拋物線y=mx2+nx相交于A(1,3 ),B(4,0)兩點(diǎn).

(1)求出拋物線的解析式;

(2)在坐標(biāo)軸上是否存在點(diǎn)D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說(shuō)明理由;

(3)點(diǎn)P是線段AB上一動(dòng)點(diǎn),(點(diǎn)P不與點(diǎn)A、B重合),過(guò)點(diǎn)PPMOA,交第一象限內(nèi)的拋物線于點(diǎn)M,過(guò)點(diǎn)MMCx軸于點(diǎn)C,交AB于點(diǎn)N,若△BCN、△PMN的面積SBCN、SPMN滿足SBCN=2SPMN,求出的值,并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一艘輪船早上8時(shí)從點(diǎn)A向正北方向出發(fā),小島P在輪船的北偏西15°方向,輪船每小時(shí)航行15海里,11時(shí)輪船到達(dá)點(diǎn)B處,小島P此時(shí)在輪船的北偏西30°方向.

(1)求此時(shí)輪船距小島為多少海里?

(2)在小島P的周?chē)?/span>20海里范圍內(nèi)有暗礁,如果輪船不改變方向繼續(xù)向前航行,是否會(huì)有觸礁危險(xiǎn)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案