如圖所示,Rt△ABC∽Rt△DEF,則cosE的值等于( )

A.
B.
C.
D.
【答案】分析:先根據(jù)相似三角形的性質求出∠E=∠ABC=60°,再根據(jù)特殊角的三角函數(shù)值解答即可.
解答:解:∵Rt△ABC∽Rt△DEF,
∴∠E=∠ABC=60°,
∴cosE=cos60°=
故選A.
點評:本題考查相似三角形的性質和特殊角的三角函數(shù)值.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

6、如圖所示的Rt△ABC繞直角邊AB旋轉一周,所得幾何體的主視圖為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

9、如圖所示,Rt△ABC中,∠C=90°,AB的垂直平分線DE交BC于D,交AB于點E.當∠B=30°時,圖中一定相等的線段錯誤的有(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,點D在BC上運動(不能到達點B,C),過點D作∠ADE=45°,DE交AC于點E.
(1)求證:△ABD∽△DCE;
(2)當△ADE是等腰三角形時,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,Rt△ABC中,∠C=90°,AB=4,△ABC的面積為
5
2
,則tanA+tanB等于(  )精英家教網
A、
4
5
B、
5
2
C、4
D、
16
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖所示,Rt△ABC中,∠C=90°,∠ABC=60°,DC=11,D點到AB的距離為2,求BD的長.

查看答案和解析>>

同步練習冊答案