將正方形ABCD中的△ABP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)能與△CBP′重合,若BP=4,則PP′=______.
由旋轉(zhuǎn)的性質(zhì)可知,旋轉(zhuǎn)角∠PBP′=∠ABC=90°,BP=BP′=4,
∴在Rt△BPP′中,由勾股定理得,
PP′=
BP2+BP2
=4
2

故答案是:4
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ACD、△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,∠BAC=30°,若△EAC旋轉(zhuǎn)后能與△BAD重合.問:
(1)旋轉(zhuǎn)中心是哪一點(diǎn)?
(2)旋轉(zhuǎn)角為多少度?
(3)若BD=5cm,求EC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,將等腰直角△ABC繞底角頂點(diǎn)A逆時(shí)針旋轉(zhuǎn)15°后得到△A′B′C′,如果AC=1,那么兩個(gè)三角形的重疊部分面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形ABCD的邊BC上有一點(diǎn)E,F(xiàn)在邊AB的延長(zhǎng)線上,且△AEB旋轉(zhuǎn)一定角度后能與△CFB重合,則線段AE與CF的關(guān)系是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,△ABC為格點(diǎn)三角形(即三角形的頂點(diǎn)都在格點(diǎn)上).
(1)把△ABC沿BA方向平移后,點(diǎn)A移到點(diǎn)A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;
(2)把△A1B1C1繞點(diǎn)A1按順時(shí)針方向旋轉(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,把△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)25°,得到△A′B′C,A′B′交AC于點(diǎn)D,若∠A′DC=90°,則∠A=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點(diǎn),滿足∠EAF=
1
2
∠DAB,試猜想當(dāng)∠B與∠D滿足______時(shí),可使得DE+BF=EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方形ABCD的邊長(zhǎng)為4cm,正方形AEFG的邊長(zhǎng)為1cm,如果正方形AEFG繞點(diǎn)A旋轉(zhuǎn),那么C,F(xiàn)兩點(diǎn)
之間的距離的最大值為( 。
A.5B.3C.5
2
D.3
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一塊空地,如圖,AC=BC,∠ACB=90°,∠DCE=45°,AD=3m,BE=4m,在△ADC中種紅花,△DCE中種紫花,△BCE中種黃花,紅花、紫花、黃花每平方米要投入8元、10元、12元,問共需投入多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案