在等腰梯形ABCD中,AD∥BC,AB=CD,∠A=60°,則∠C=________.

120°
分析:根據等腰梯形同一底上的兩底角相等求出∠D,再根據兩直線平行,同旁內角互補求解即可.
解答:解:在等腰梯形ABCD中,∵AB=CD,∠A=60°,
∴∠D=∠A=60°,
∵AD∥BC,
∴∠C=180°-∠D=180°-60°=120°.
故答案為:120°.
點評:本題考查了等腰梯形的性質,平行線的性質,主要利用了等腰梯形同一底上的兩底角相等的性質,熟記性質是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、在等腰梯形ABCD中,AD∥BC,AD=3cm,AB=4cm,∠B=60°,則下底BC的長為
7
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、如圖所示,在等腰梯形ABCD中,AD∥BC,AB=CD,點P為BC邊上任意一點,且
PE⊥AB,PF⊥CD,BG⊥CD,垂足分別是E、F、G,請你探索PE、PF、BG的長度之間的關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點E為邊BC上一點,且AE=DC.
(1)求證:四邊形AECD是平行四邊形;
(2)當∠B=2∠DCA時,求證:四邊形AECD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在等腰梯形ABCD中,AD∥BC,M是AD的中點,MB=MC嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,垂足為O,過D作DE∥AC交BC的延長線于E.
(1)求證:四邊形ACED是平行四邊形;
(2)若AD=4,BC=8,求梯形ABCD的面積.

查看答案和解析>>

同步練習冊答案