如圖,已知⊙O的直徑AB與弦CD相交于點(diǎn)E,AB⊥CD,⊙O的切線BF與弦AD的延長(zhǎng)線相交于點(diǎn)F.
(1)求證:CD∥BF;
(2)若⊙O的半徑為5,cos∠BCD=,求線段AD的長(zhǎng).

【答案】分析:(1)由BF是⊙O的切線,AB是⊙O的直徑,根據(jù)切線的性質(zhì),即可得BF⊥AB,又由AB⊥CD,即可得CD∥BF;
(2)又由AB是⊙O的直徑,可得∠ADB=90°,由圓周角定理,可得∠BAD=∠BCD,然后由⊙O的半徑為5,cos∠BCD=,即可求得線段AD的長(zhǎng).
解答:(1)證明:∵BF是⊙O的切線,AB是⊙O的直徑,
∴BF⊥AB,…3分
∵CD⊥AB,
∴CD∥BF; …6分

(2)解:∵AB是⊙O的直徑,
∴∠ADB=90°,…7分
∵⊙O的半徑5,
∴AB=10,…8分
∵∠BAD=∠BCD,…10分
∴cos∠BAD=cos∠BCD==,
∴AD=cos∠BAD•AB=×10=8,
∴AD=8.…12分
點(diǎn)評(píng):此題考查了切線的性質(zhì)、平行線的判定、圓周角定理以及三角函數(shù)的性質(zhì).此題難度適中,注意數(shù)形結(jié)合思想與轉(zhuǎn)化思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,已知⊙O的直徑AB⊥弦CD于點(diǎn)E,下列結(jié)論中一定正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知半圓的直徑AB=4cm,點(diǎn)C、D是這個(gè)半圓的三等分點(diǎn),則弦AC、AD和
CD
圍成的陰影部分面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖,已知⊙O的直徑為10,P為⊙O內(nèi)一點(diǎn),且OP=4,則過(guò)點(diǎn)P且長(zhǎng)度小于6的弦共有
0
條.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知⊙O的直徑AB與弦AC的夾角∠CAB=27°,過(guò)點(diǎn)C作⊙O的切線交AB延長(zhǎng)線于點(diǎn)D,則∠ADC的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•邢臺(tái)二模)如圖,已知⊙O的直徑AB與弦AC的夾角為31°,過(guò)C點(diǎn)的切線PC與AB的延長(zhǎng)線交于點(diǎn)P,則∠P等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案