【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+2x軸、y軸分別交于點(diǎn)A-1,0)和點(diǎn)B,與反比例函數(shù)y=的圖象在第一象限內(nèi)交于點(diǎn)C1,n).

1)求k的值;

2)求反比例函數(shù)的解析式;

3)過x軸上的點(diǎn)Da0)作平行于y軸的直線la1),分別與直線AB和雙曲線y=交于點(diǎn)PQ,且PQ=2QD,求點(diǎn)D的坐標(biāo).

【答案】1k=2;(2)反比例函數(shù)的解析式為y;(3D2,0).

【解析】

1)根據(jù)A-1,0)代入y=kx+2,即可得到k的值;

2)把C1,n)代入y=2x+2,可得C1,4),代入反比例函數(shù)y=得到m的值;

3)先根據(jù)Da,0),PDy軸,即可得出Pa,2a+2),Qa),再根據(jù)PQ=2QD,即可得2a+2-,進(jìn)而求得點(diǎn)D的坐標(biāo).

1)把A-10)代入y=kx+2,得-k+2=0,

k=2;

2)把C1,n)代入y=2x+2,得n=1×2+2=4,

C14),

m=1×4=4

∴反比例函數(shù)的解析式為y;

3)∵Da,0),PDy軸,

Pa2a+2),Qa),

PQ=2QD,得2a+2-,

整理,得a2+a-6=0,

解得a1=2,a2=-3(舍去),

D2,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,雙曲線經(jīng)過矩形OABC的邊BC的中點(diǎn)E,交AB于點(diǎn)D.設(shè)點(diǎn)B的坐標(biāo)為(m,n.

1)直接寫出點(diǎn)E的坐標(biāo),并求出點(diǎn)D的坐標(biāo);(用含mn的代數(shù)式表示)

2)若梯形ODBC的面積為,求雙曲線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)數(shù)學(xué)小組在課外活動(dòng)中,研究了同一坐標(biāo)系中兩個(gè)反比例函數(shù) 在第一象限圖象的性質(zhì),經(jīng)歷了如下探究過程:

操作猜想:

1)如圖①,當(dāng),時(shí),在軸的正方向上取一點(diǎn)軸的平行線交于點(diǎn),交于點(diǎn).當(dāng)時(shí),________________,________;當(dāng)時(shí),________,________,________;當(dāng)時(shí),猜想________.

數(shù)學(xué)思考:

2)在軸的正方向上任意取點(diǎn)軸的平行線,交于點(diǎn)、交于點(diǎn),請(qǐng)用含、的式子表示的值,并利用圖②加以證明.

推廣應(yīng)用:

3)如圖③,若,,在軸的正方向上分別取點(diǎn)、 軸的平行線,交于點(diǎn),交于點(diǎn),是否存在四邊形是正方形?如果存在,求的長(zhǎng)和點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】特色江蘇,美好生活,第十屆江蘇省園藝博覽會(huì)在揚(yáng)州舉行.圓圓和滿滿同學(xué)分析網(wǎng)上關(guān)于園博會(huì)的信息,發(fā)現(xiàn)最具特色的場(chǎng)館有:揚(yáng)州園,蘇州園,鹽城園,無錫園.他們準(zhǔn)備周日下午去參觀游覽,各自在這四個(gè)園中任選一個(gè),每個(gè)園被選中的可能性相同.

1)圓圓同學(xué)在四個(gè)備選園中選中揚(yáng)州園的概率是 .

2)用樹狀圖或列表法求出圓圓和滿滿他們選中同一個(gè)園參觀的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)科學(xué)技術(shù)館有圓與非圓展品,涉及了等寬曲線的知識(shí).因?yàn)閳A的任何一對(duì)平行切線的距離總是相等的,所以圓是等寬曲線.除了例以外,還有一些幾何圖形也是等寬曲線,如勒洛只角形(1),它是分別以等邊三角形的征個(gè)頂點(diǎn)為圓心,以邊長(zhǎng)為半徑,在另兩個(gè)頂點(diǎn)間畫一段圓。螆A弧圍成的曲邊三角形.圖2是等寬的勒洛三角形和圓.

下列說法中錯(cuò)誤的是( )

A.勒洛三角形是軸對(duì)稱圖形

B.1中,點(diǎn)A上任意一點(diǎn)的距離都相等

C.2中,勒洛三角形上任意一點(diǎn)到等邊三角形DEF的中心的距離都相等

D.2中,勒洛三角形的周長(zhǎng)與圓的周長(zhǎng)相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是雙曲線y=上一點(diǎn),過AABx軸,交直線y=-x于點(diǎn)B,點(diǎn)Dx軸上一點(diǎn),連接BD交雙曲線于點(diǎn)C,連接AD,若BCCD=32,ABD的面積為,tanABD=,則k的值為( 。

A. -B. -3C. -2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,對(duì)角線ACBD交于點(diǎn)O,在RtPFE中,∠EPF=90°,點(diǎn)E、F分別在邊ADAB上.

1)如圖1,若點(diǎn)P與點(diǎn)O重合:①求證:AF=DE;②若正方形的邊長(zhǎng)為2,當(dāng)∠DOE=15°時(shí),求線段EF的長(zhǎng);

2)如圖2,若RtPFE的頂點(diǎn)P在線段OB上移動(dòng)(不與點(diǎn)O、B重合),當(dāng)BD=3BP時(shí),證明:PE=2PF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:內(nèi)接于,,平分.

(1)如圖,求證:為等邊三角形.

(2)如圖,直徑,點(diǎn)上,于點(diǎn)于點(diǎn),連接,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)使點(diǎn)落在上的點(diǎn)處,求證:;

(3)如圖,在(2)的條件下,交于點(diǎn)交于點(diǎn),連接,若的面積,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸于點(diǎn)和點(diǎn),交軸于點(diǎn).

1)求拋物線的函數(shù)表達(dá)式;

2)若點(diǎn)在拋物線上,且,求點(diǎn)的坐標(biāo);

3)如圖,設(shè)點(diǎn)是線段上的一動(dòng)點(diǎn),作軸,交拋物線于點(diǎn),求線段長(zhǎng)度的最大值,并求出面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案