(2002•呼和浩特)梯形的中位線長為12cm,一條對角線把中位線分成1:2兩部分,舊梯形的兩底分別為( )
A.4cm和8cm
B.9cm和15cm
C.10cm和14cm
D.8cm和16cm
【答案】分析:三角形的中位線等于三角形第三邊的一半.
解答:解:∵中位線長為12cm,一條對角線把中位線分成1:2兩部分,
∴這兩部分長分別為4cm,8cm.它們分別是這條對角線所截得的三角形的中位線,
所以舊梯形的兩底分別為2×4=8cm;2×8=16cm.
故選D.
點評:本題用到的知識點為:一組平行線在一條直線上截得的線段相等,在其他直線上截得的線段也相等.三角形的中位線等于三角形第三邊的一半.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(01)(解析版) 題型:選擇題

(2002•呼和浩特)已知一次函數(shù)y=x+m和y=-x+n的圖象都經(jīng)過點A(-2,0),且與y軸分別交于B,C兩點,那么△ABC的面積是( )
A.2
B.3
C.4
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2002•呼和浩特)如圖,在直角坐標系中,點O’的坐標為(2,0),OO’與x軸交于原點O和點A,B、C、E三點的坐標分別為(-1,0),(0,3)和(0,p),且0<p≤3.
(1)求經(jīng)過點B、C的直線的解析式;
(2)當點E在線段OC上移動時,直線BE與⊙O'有哪幾種位置關(guān)系?當P分別在什么范圍內(nèi)取值時,直線BE與⊙O'是這幾種位置關(guān)系?
(3)設(shè)過點A、B、E的拋物線的頂點是D,求四邊形ABED的面積的最大或最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:填空題

(2002•呼和浩特)已知M、N兩點關(guān)于y軸對稱,且點M在雙曲線y=上,點N在直線y=x+3上,設(shè)點M坐標為(a,b),則拋物線y=-abx2+(a+b)x的頂點坐標為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(01)(解析版) 題型:選擇題

(2002•呼和浩特)已知一次函數(shù)y=x+m和y=-x+n的圖象都經(jīng)過點A(-2,0),且與y軸分別交于B,C兩點,那么△ABC的面積是( )
A.2
B.3
C.4
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年內(nèi)蒙古呼和浩特市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•呼和浩特)如圖,在直角坐標系中,點O’的坐標為(2,0),OO’與x軸交于原點O和點A,B、C、E三點的坐標分別為(-1,0),(0,3)和(0,p),且0<p≤3.
(1)求經(jīng)過點B、C的直線的解析式;
(2)當點E在線段OC上移動時,直線BE與⊙O'有哪幾種位置關(guān)系?當P分別在什么范圍內(nèi)取值時,直線BE與⊙O'是這幾種位置關(guān)系?
(3)設(shè)過點A、B、E的拋物線的頂點是D,求四邊形ABED的面積的最大或最小值.

查看答案和解析>>

同步練習(xí)冊答案