【題目】紅星中學九年級(1)班三位教師決定帶領本班名學生利用假期去某地旅游,楓江旅行社的收費標準為:教師全價,學生半價;而東方旅行社不管教師還是學生一律八折優(yōu)惠,這兩家旅行社的全價都是500元。

(1)用含的式子表示三位教師和位學生參加這兩家旅行社所需的費用各是多少元;

(2)如果=50時,請你計算選擇哪一家旅行社較為合算?

【答案】(1)參加楓江旅行社的總費用為(250a+1500)元,參加東方旅行社的總費用為(400a+1200)元;(2)參加楓江旅行社合算.

【解析】試題分析:1)參加楓江旅行社的總費用=3×500+學生數(shù)×500×0.5;參加東方旅行社的總費用=師生總?cè)藬?shù)×500×0.8,把相關數(shù)值代入化簡即可;(2)把a=50代入(1)得到的2個代數(shù)式中,計算后比較即可.

試題解析:

1)參加楓江旅行社的總費用為:3×500+250a=250a+1500;
參加東方旅行社的總費用為:(3+a×500×0.8=400a+1200;
答:參加楓江旅行社的總費用為(250a+1500)元,參加東方旅行社的總費用為(400a+1200)元;
2)當a=50時,參加楓江旅行社的總費用為250×50+1500=14000(元);
參加東方旅行社的總費用為:400×50+1200=21200(元).
參加楓江旅行社合算.
答:參加楓江旅行社合算.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCD中,把ADE沿AE折疊得AED’,若∠BAD’=30

(1)求∠AED’的度數(shù);

(2)把△AED’A點逆時針旋轉(zhuǎn)60AD1E1,畫出AD1E1;

(3)直接寫出∠AD1E和∠E1D1E.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點上,則∠AED的正弦值等于(
A.
B.
C.2
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校計劃購買籃球、排球共20個,購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同。

(1)籃球和排球的單價各是多少元?

(2)若購買籃球不少于8個,所需費用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下列解題過程,然后解答問題

解方程:|x+3|=2.

解:當x+3≥0時,原方程可化為:x+3=2,解得x=﹣1

當x+3<0時,原方程可化為:x+3=﹣2,解得x=﹣5

所以原方程的解是x=﹣1,x=﹣5

(1)解方程:|3x﹣2|﹣4=0;

(2)探究:當b為何值時,方程|x﹣2|=b ①無解;②只有一個解;③有兩個解.

(3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在日歷中任意圈出一個3×3的正方形,則里面九個數(shù)不滿足的關系式是( 。

A. a1+a2+a3+a7+a8+a9=2(a4+a5+a6

B. a1+a4+a7+a3+a6+a9=2(a2+a5+a8

C. a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5

D. (a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A(0,1),M(3,2),N(4,4).動點P從點A出發(fā),沿軸以每秒1個單位長的速度向上移動,且過點P的直線也隨之移動,設移動時間為秒.

(1)當時,求直線的解析式;

(2)若點M,N位于直線的異側(cè),確定的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A、B、C在數(shù)軸上對應的實數(shù)分別為a、b、c,滿足(b+5)2+|a﹣8|=0,點P位于該數(shù)軸上.

(1)求出a,b的值,并求A、B兩點間的距離;

(2)設點C與點A的距離為25個單位長度,且|ac|=﹣ac.若PB=2PC,求點P在數(shù)軸上對應的實數(shù);

(3)若點P從原點開始第一次向左移動1個單位長度,第二次向右移動3個單位長度,第三次向左移動5個單位長度,第四次向右移動7個單位長度,(以此類推).則點p 能移動到與點A或點B重合的位置嗎?若能,請?zhí)骄啃枰苿佣嗌俅沃睾希咳舨荒,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的方程x2+2m﹣2x+m2﹣3m+3=0

1有兩個不相等的實數(shù)根m的取值范圍;

2x1,x2是方程的兩根且x12+x22=6,m

查看答案和解析>>

同步練習冊答案