設(shè)關(guān)于x的一次函數(shù)y=a1x+b1與y=a2x+b2,稱函數(shù)y=m(a1x+b1)+n(a2x+b2)(其中m+n=1)為這兩個(gè)函數(shù)的生成函數(shù)。則當(dāng)x=1時(shí),函數(shù)y=x+2與y=3x的生成函數(shù)的值為_(kāi)________。

 

【答案】

3

【解析】

試題分析:由題意把x=1、y=x+2與y=3x代入生成函數(shù)中,再結(jié)合m+n=1即可得到結(jié)果。

由題意得y=m(x+2)+3nx,

當(dāng)x=1,m+n=1時(shí),

y=3m+3n=3(m+n)=3.

考點(diǎn):本題考查的是一次函數(shù)

點(diǎn)評(píng):解答本題的關(guān)鍵是讀懂題意,正確理解生成函數(shù)的形成,同時(shí)本題要具備整體意識(shí)。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、設(shè)關(guān)于x的一次函數(shù)y=a1x+b1與y=a2x+b2,則稱函數(shù)y=m(a1x+b1)+n(a2x+b2)(其中m+n=1)為此兩個(gè)函數(shù)的生成函數(shù).當(dāng)x=1時(shí),求函數(shù)y=x+1與y=2x的生成函數(shù)的值是
y=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、設(shè)關(guān)于x的一次函數(shù)y=a1x+b1與y=a2x+b2,則稱函數(shù)y=m(a1x+b1)+n(a2x+b2)(其中m+n=1)為此兩個(gè)函數(shù)的生成函數(shù).
(1)當(dāng)x=1時(shí),求函數(shù)y=x+1與y=2x的生成函數(shù)的值;
(2)若函數(shù)y=a1x+b1與y=a2x+b2的圖象的交點(diǎn)為P,判斷點(diǎn)P是否在此兩個(gè)函數(shù)的生成函數(shù)的圖象上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年浙江省湖州市九年級(jí)數(shù)學(xué)競(jìng)賽試卷(解析版) 題型:解答題

設(shè)關(guān)于x的一次函數(shù)y=a1x+b1與y=a2x+b2,則稱函數(shù)y=m(a1x+b1)+n(a2x+b2)(其中m+n=1)為此兩個(gè)函數(shù)的生成函數(shù).
(1)當(dāng)x=1時(shí),求函數(shù)y=x+1與y=2x的生成函數(shù)的值;
(2)若函數(shù)y=a1x+b1與y=a2x+b2的圖象的交點(diǎn)為P,判斷點(diǎn)P是否在此兩個(gè)函數(shù)的生成函數(shù)的圖象上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省武漢市一中分配生素質(zhì)測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)關(guān)于x的一次函數(shù)y=a1x+b1與y=a2x+b2,則稱函數(shù)y=m(a1x+b1)+n(a2x+b2)(其中m+n=1)為此兩個(gè)函數(shù)的生成函數(shù).
(1)當(dāng)x=1時(shí),求函數(shù)y=x+1與y=2x的生成函數(shù)的值;
(2)若函數(shù)y=a1x+b1與y=a2x+b2的圖象的交點(diǎn)為P,判斷點(diǎn)P是否在此兩個(gè)函數(shù)的生成函數(shù)的圖象上,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案