【題目】已知:拋物線:與拋物線關(guān)于y軸對稱, 拋物線與x軸分別交于點(diǎn)A(-3, 0), B(m, 0), 頂點(diǎn)為M.
(1)求b和m的值;
(2)求拋物線的解析式;
(3)在x軸, y軸上分別有點(diǎn)P(t, 0), Q(0, -2t), 其中t>0, 當(dāng)線段PQ與拋物線有且只有一個公共點(diǎn)時,求t的取值范圍.
【答案】(1) m=-1;(2) y=2x2-8x+6;(3) 當(dāng)1≤t<3或t=時,PQ與拋物線C2有且僅有一個公共點(diǎn).
【解析】(1)把A(-3,0)代入y=2x2+bx+6,即可求得b的值,從而求得解析式,令y=0,j解方程即可求得m的值;
(2)根據(jù)C1:y=2x2+8x+6=2(x+2)2-2,求得頂點(diǎn)M(-2,-2),即可求得點(diǎn)M關(guān)于y軸的對稱點(diǎn)N(2,-2),由于a的值不變,根據(jù)頂點(diǎn)得出C2:y=2(x-2)2-2=2x2-8x+6;
(3)根據(jù)P、Q的坐標(biāo)求得直線PQ的解析式,然后分三種情況討論求得.
(1)∵拋物線y=2x2+bx+6過點(diǎn)A(-3,0),
∴0=18-3b+6,
∴b=8,
∴C1:y=2x2+8x+6,
令y=0,則2x2+8x+6=0,
解得x1=-3,x2=-1
∴m=-1;
(2)∵C1:y=2x2+8x+6=2(x+2)2-2,
∴M(-2,-2),
∴點(diǎn)M關(guān)于y軸的對稱點(diǎn)N(2,-2),
∴C2:y=2(x-2)2-2=2x2-8x+6,
(3)由題意,點(diǎn)A(-3,0)與D,點(diǎn)B(-1,0)與C關(guān)于y軸對稱,
∴D(3,0),C(1,0),
∵P(t,0),Q(0,-2t),
∴PQ:y=2x-2t,
當(dāng)PQ過點(diǎn)C時,即P與C重合時,t=1,
當(dāng)PQ過點(diǎn)D時,即P與D重合時,t=3,
當(dāng)直線PQ與拋物線C2有且僅有一個公共點(diǎn)時,即方程2x2-8x+6=2x-2t中△=0,
方程整理得x2-5x+3+t=0,△=25-4(3+t)=0,
解得t=.
綜上,由圖得,當(dāng)1≤t<3或t=時,PQ與拋物線C2有且僅有一個公共點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為推動“時刻聽黨話 永遠(yuǎn)跟黨走”校園主題教育活動,計(jì)劃開展四項(xiàng)活動:A:黨史演講比賽,B:黨史手抄報比賽,C:黨史知識競賽,D:紅色歌詠比賽.校團(tuán)委對學(xué)生最喜歡的一項(xiàng)活動進(jìn)行調(diào)查,隨機(jī)抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1,圖2兩幅不完整的統(tǒng)計(jì)圖.請結(jié)合圖中信息解答下列問題:
(1)本次共調(diào)查了 名學(xué)生;將圖1的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中m= ,表示“C”類的扇形的圓心角是 度;
(3)已知在被調(diào)查的最喜歡“黨史知識競賽”項(xiàng)目的4個學(xué)生中只有1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生參加該項(xiàng)目比賽,請用畫樹狀圖或列表的方法,求出恰好抽到一名男生一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是某校七﹣九年級某月課外興趣小組活動時間統(tǒng)計(jì)表,其中各年級同一興趣小組每次活動時間相同,但表格中九年級的兩個數(shù)據(jù)被遮蓋了,記得九年級文藝小組活動次數(shù)與科技小組活動次數(shù)相同.
年級 | 課外小組活動總時間(單位:h) | 文藝小組活動次數(shù) | 科技小組活動次數(shù) |
七年級 | 17 | 6 | 8 |
八年級 | 14.5 | 5 | 7 |
九年級 | 12.5 |
則九年級科技小組活動的次數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
如圖1,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與點(diǎn)A、點(diǎn)B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點(diǎn);如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強(qiáng)相似點(diǎn).解決問題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(diǎn)(即每個小正方形的頂點(diǎn))上,試在圖2中畫出矩形ABCD的邊AB上的一個強(qiáng)相似點(diǎn)E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處.若點(diǎn)E恰好是四邊形ABCM的邊AB上的一個強(qiáng)相似點(diǎn),試探究AB和BC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=90°,AB=BC,D在邊 AC上,AE⊥BD于 E
(1)如圖1,作 CF⊥BD于F,求證:CF-AE=EF
(2)如圖2,若 BC=CD,求的值
(3)如圖3,作 BM⊥BE,且 BM=BE,AE=2,EN=4,連 CM交 BE于 N,請直接寫出△BCM的面積為___
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】樂樂對幾何中角平分線的興趣濃厚,請你和樂樂一起探究下面問題吧.已知°,射線分別是和的平分線;
(1)如圖1,若射線在的內(nèi)部,且,求的度數(shù);
(2)如圖2,若射線在的內(nèi)部繞點(diǎn)旋轉(zhuǎn),則的度數(shù)為;
(3)若射線在的外部繞點(diǎn)旋轉(zhuǎn)(旋轉(zhuǎn)中,均指小于的角),其余條件不變,請借助圖3探究的大小,請直接寫出的度數(shù)(不寫探究過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題情境)
如圖1,四邊形ABCD是正方形,M是BC邊上的一點(diǎn),E是CD邊的中點(diǎn),AE平分∠DAM.求證:AM=AD+MC.
(探究展示)
(2)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,試判斷AM=AD+MC是否成立?若成立,請給出證明,若不成立,請說明理由;
(拓展延伸)
(3)若(2)中矩形ABCD兩邊AB=6,BC=9,求AM的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com