如圖,已知:直線AD∥BC.AC⊥AD于A,BD、AC交于點E,且DE=2AB.

求證:∠ABC=3∠DBC.

答案:
解析:

取DE的中點M,連結AM.

∵AC⊥AD,△DEA是直角三角形,∴AM=DE=DM.∵DE=2AB,∴AM=AB,∴∠AMB=∠D+∠MAD,∠D=∠MAD,∴∠ABM=2∠D.∵AD∥BC,∠DBC=∠D,∴∠ABC=3∠DBC.


提示:

要證明∠ABC=3∠DBC,只要證明∠ABD=2∠DBC.注意到DE=2AB,且△DEA是直角三角形,聯(lián)想直角三角形斜邊上的中線,溝通DE與AB的關系.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•通州區(qū)一模)小明在學習軸對稱的時候,老師留了這樣一道思考題:如圖,已知在直線l的同側有A、B兩點,請你在直線l上確定一點P,使得PA+PB的值最。∶魍ㄟ^獨立思考,很快得出了解決這個問題的正確方法,他的作法是這樣的:
①作點A關于直線l的對稱點A′.
②連接A′B,交直線l于點P.則點P為所求.請你參考小明的作法解決下列問題:
(1)如圖1,在△ABC中,點D、E分別是AB、AC邊的中點,BC=6,BC邊上的高為4,請你在BC邊上確定一點P,使得△PDE的周長最。
①在圖1中作出點P.(三角板、刻度尺作圖,保留作圖痕跡,不寫作法)
②請直接寫出△PDE周長的最小值
8
8

(2)如圖2在矩形ABCD中,AB=4,BC=6,G為邊AD的中點,若E、F為邊AB上的兩個動點,點E在點F左側,且EF=1,當四邊形CGEF的周長最小時,請你在圖2中確定點E、F的位置.(三角板、刻度尺作圖,保留作圖痕跡,不寫作法),并直接寫出四邊形CGEF周長的最小值
6+3
10
6+3
10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小明在學習軸對稱的時候,老師留了這樣一道思考題:如圖,已知在直線l的同側有A、B兩點,請你在直線l上確定一點P,使得PA+PB的值最小.小明通過獨立思考,很快得出了解決這個問題的正確方法,他的作法是這樣的:

①作點A關于直線l的對稱點A′.

②連結A′B,交直線l于點P.

則點P為所求.

請你參考小明的作法解決下列問題:

(1)如圖,在△ABC中,點D、E分別是AB、AC邊的中點,BC=6,BC邊上的高為4,請你在BC邊上確定一點P,使得△PDE的周長最小.

 

①在圖1中作出點P.(三角板、刻度尺作圖,保留作圖

痕跡,不寫作法)                  

②請直接寫出△PDE周長的最小值        .

(2)如圖在矩形ABCD中,AB=4,BC=6,G為邊AD的中點,若E、F為邊AB上的兩個動點,點E在點F左側,且EF=1,當四邊形CGEF的周長最小時,請你在圖2中確定點E、F的位置.(三角板、刻度尺作圖,保留作圖痕跡,不寫作法),并直接寫出四邊形CGEF周長的最小值      .

 

 

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小明在學習軸對稱的時候,老師留了這樣一道思考題:如圖,已知在直線l的同側有A、B兩點,請你在直線l上確定一點P,使得PA+PB的值最小.小明通過獨立思考,很快得出了解決這個問題的正確方法,他的作法是這樣的:

①作點A關于直線l的對稱點A′.
②連結A′B,交直線l于點P.
則點P為所求.

請你參考小明的作法解決下列問題:
(1)如圖,在△ABC中,點D、E分別是AB、AC邊的中點,BC=6,BC邊上的高為4,請你在BC邊上確定一點P,使得△PDE的周長最小.

①在圖1中作出點P.(三角板、刻度尺作圖,保留作圖
痕跡,不寫作法)                  
②請直接寫出△PDE周長的最小值        .
(2)如圖在矩形ABCD中,AB=4,BC=6,G為邊AD的中點,若E、F為邊AB上的兩個動點,點E在點F左側,且EF=1,當四邊形CGEF的周長最小時,請你在圖2中確定點E、F的位置.(三角板、刻度尺作圖,保留作圖痕跡,不寫作法),并直接寫出四邊形CGEF周長的最小值     .

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年北京市通州區(qū)九年級中考一模數(shù)學卷(解析版) 題型:解答題

小明在學習軸對稱的時候,老師留了這樣一道思考題:如圖,已知在直線l的同側有A、B兩點,請你在直線l上確定一點P,使得PA+PB的值最小.小明通過獨立思考,很快得出了解決這個問題的正確方法,他的作法是這樣的:

①作點A關于直線l的對稱點A′.

②連結A′B,交直線l于點P.

則點P為所求.

請你參考小明的作法解決下列問題:

(1)如圖,在△ABC中,點D、E分別是AB、AC邊的中點,BC=6,BC邊上的高為4,請你在BC邊上確定一點P,使得△PDE的周長最小.

 

①在圖1中作出點P.(三角板、刻度尺作圖,保留作圖

痕跡,不寫作法)                  

②請直接寫出△PDE周長的最小值         .

(2)如圖在矩形ABCD中,AB=4,BC=6,G為邊AD的中點,若E、F為邊AB上的兩個動點,點E在點F左側,且EF=1,當四邊形CGEF的周長最小時,請你在圖2中確定點E、F的位置.(三角板、刻度尺作圖,保留作圖痕跡,不寫作法),并直接寫出四邊形CGEF周長的最小值      .

 

 

 

查看答案和解析>>

同步練習冊答案