(2013•徐匯區(qū)一模)如圖,AC、BC相交于點O,下列條件中能判定CD∥AB的是 (  )
分析:根據(jù)平行線分線段成比例定理對各選項分析判斷后利用排除法求解.
解答:解:A、AO與DO,BO與CO不是對應線段,不能判定CD∥AB,故本選項錯誤;
B、AO與CD,AB與CD不是對應線段,不能判定CD∥AB,故本選項錯誤;
C、應為
BO
DO
=
AO
CO
,能判定CD∥AB,故本選項錯誤;
D、
AO
AC
=
BO
BD
能判定CD∥AB,故本選項正確.
故選D.
點評:本題考查了平行線分線段成比例定理,根據(jù)圖形準確找出對應線段是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•徐匯區(qū)一模)“數(shù)學迷”小楠通過從“特殊到一般”的過程,對倍角三角形(一個內(nèi)角是另一個內(nèi)角的2倍的三角形)進行研究.得出結(jié)論:如圖1,在△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,如果∠A=2∠B,那么a2-b2=bc.
下面給出小楠對其中一種特殊情形的一種證明方法.
已知:如圖2,在△ABC中,∠A=90°,∠B=45°.
求證:a2-b2=bc.
證明:如圖2,延長CA到D,使得AD=AB.
∴∠D=∠ABD,
∵∠CAB=∠D+∠ABD=2∠D,∠CAB=90°
∴∠D=45°,∵∠ABC=45°,
∴∠D=∠ABC,又∠C=∠C
∴△ABC∽△BCD
BC
CD
=
AC
BC
,即
a
b+c
=
b
a

∴a2-b2=bc
根據(jù)上述材料提供的信息,請你完成下列情形的證明(用不同于材料中的方法也可以):
已知:如圖1,在△ABC中,∠A=2∠B.
求證:a2-b2=bc.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•徐匯區(qū)一模)在Rt△ABC中,∠C=90°,AC=5,AB=13,那么tanA等于(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•徐匯區(qū)一模)將拋物線y=x2沿y軸向上平移1個單位后所得拋物線的解析式是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•徐匯區(qū)一模)拋物線y=mx2-5mx+n與y軸正半軸交于點C,與x軸分別交于點A和點B(1,0),且OC2=OA•OB.
(1)求拋物線的解析式;                                        
(2)點P是y軸上一點,當△PBC和△ABC相似時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•徐匯區(qū)一模)梯形ABCD中,AB∥CD,CD=10,AB=50,cosA=
45
,∠A+∠B=90°,點M是邊AB的中點,點N是邊AD上的動點.
(1)如圖1,求梯形ABCD的周長;        
(2)如圖2,聯(lián)結(jié)MN,設AN=x,MN•cos∠NMA=y(0°<∠NMA<90°),求y關于x的關系式及定義域;
(3)如果直線MN與直線BC交于點P,當P=∠A時,求AN的長.

查看答案和解析>>

同步練習冊答案