【題目】如圖,直線l1∥l2,直線l與l1、l2分別交于A、B兩點,點M、N分別在l1、l2上,點M、N、P均在l的同側(點P不在l1、l2上),若∠PAM=α,∠PBN=β.
(1)當點P在l1與l2之間時.
①求∠APB的大小(用含α、β的代數(shù)式表示);
②若∠PAM的平分線與∠PBN的平分線交于點P1,∠P1AM的平分線與∠P1BN的平分線交于點P2,…,∠Pn﹣1AM的平分線與∠Pn﹣1BN的平分線交于點Pn,則∠AP1B= ,∠APnB= .(用含α、β的代數(shù)式表示,其中n為正整數(shù))
(2)當點P不在l1與l2之間時.
若∠PAM的平分線與∠PBN的平分線交于點P,∠P1AM的平分線與∠P1BN的平分線交于點P2,…,∠Pn﹣1AM的平分線與∠Pn﹣1BN的平分線交于點Pn,請直接寫出∠APnB的大。ㄓ煤α、β的代數(shù)式表示,其中n為正整數(shù))
【答案】(1)①∠APB=α+β; ②∠AP1B=(α+β);∠APnB=;(2)∠ApnB=
【解析】
(1)過點P作PQ∥l1交AB于Q,則∠APQ=∠MAP=α,由∠APQ=∠MAP=α①,∠QPB=∠PBN=β②,①+②即可解決問題.
(2)利用(1)的結論即可解決問題,分兩種情形寫出結論即可.
(1)①過點P作PQ∥l1交AB于Q,則∠APQ=∠MAP=α … ①
∵l1∥l2,
∴PQ∥l2,
∴∠QPB=∠PBN=β … ②,
①+②得∠APQ+∠BPQ=∠MAP+∠PBN,
∴∠APB=α+β.
由上可知∠P1=(α+β),∠p2=(α+β),∠p3=(α+β)
∴∠APnB=.
故∠AP1B=(α+β);∠APnB=
(2)當P在l1上方時,β>α,∠APnB=.
當點P在l2下方時,α>β,∠ApnB=.
故 ∠ApnB=
科目:初中數(shù)學 來源: 題型:
【題目】某市環(huán)保局決定購買A、B兩種型號的掃地車共40輛,對城區(qū)所有公路地面進行清掃.已知1輛A型掃地車和2輛B型掃地車每周可以處理地面垃圾100噸,2輛A型掃地車和1輛B型掃地車每周可以處理垃圾110噸.
(1)求A、B兩種型號的掃地車每輛每周分別可以處理垃圾多少噸?
(2)已知A型掃地車每輛價格為25萬元,B型掃地車每輛價格為20萬元,要想使環(huán)保局購買掃地車的資金不超過910萬元,但每周處理垃圾的量又不低于1400噸,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少資金是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象交于一、三象限內(nèi)的A、B兩點,與x軸交于C點,點A的坐標為(2,m),點B的坐標為(n,﹣2),tan∠BOC= .
(1)求該反比例函數(shù)和一次函數(shù)的解析式.
(2)求△BOC的面積.
(3)P是x軸上的點,且△PAC的面積與△BOC的面積相等,求P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“校園安全”受到社會的廣泛關注,某校政教處對部分學生就校園安全知識的了解程度,進行了隨機抽樣調(diào)查,并繪制了如下兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學生共有______名;
(2)請補全折線統(tǒng)計圖,并求出扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形紙片ABCD沿EF折疊后,ED交BC于點G,點D、C分別落在點D′、C′位置上,若∠EFG=55°,∠BGE=_____度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在平面直角坐標系中,、兩點的坐標分別為、,、分別是軸、軸上的點.如果以點、、、為頂點的四邊形是平行四邊形,則的坐標為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAD=130°,∠B=∠D=90°,點E,F分別是線段BC,DC上的動點.當△AEF的周長最小時,則∠EAF的度數(shù)為( 。
A. 90°B. 80°C. 70°D. 60°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,△A′OB是將等腰直角三角形AOB的頂點A經(jīng)過一次變換后所得的等腰直角三角形,請在圖②③中,保持O,B位置不動,對點A經(jīng)過一次(或一組)變換,使變換后的△A′OB仍是等腰直角三角形.要求:作出△A′OB,并寫出點A的變換方式.
方式1:把點A向下平移4個單位;
方式2:_________________;
方式3:_________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩工程隊承包一項工程,如果甲工程隊單獨施工,恰好如期完成;如果乙工程隊單獨施工就要超過6個月才能完成,現(xiàn)在甲、乙兩隊先共同施工4個月,剩下的由乙隊單獨施工,則恰好如期完成.
(1)問原來規(guī)定修好這條公路需多少長時間?
(2)現(xiàn)要求甲、乙兩個工程隊都參加這項工程,但由于受到施工場地條件限制,甲、乙兩工程隊不能同時施工.已知甲工程隊每月的施工費用為4萬元,乙工程隊每月的施工費用為2萬元.為了結算方便,要求:甲、乙的施工時間為整數(shù)個月,不超過15個月完成.當施工費用最低時,甲、乙各施工了多少個月?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com