【題目】如圖,直線l1l2,直線ll1l2分別交于A、B兩點,點M、N分別在l1、l2上,點M、NP均在l的同側(點P不在l1、l2上),若∠PAM=α,∠PBN=β

1)當點Pl1l2之間時.

①求∠APB的大小(用含α、β的代數(shù)式表示);

②若∠PAM的平分線與∠PBN的平分線交于點P1,∠P1AM的平分線與∠P1BN的平分線交于點P2,,∠Pn1AM的平分線與∠Pn1BN的平分線交于點Pn,則∠AP1B=  ,∠APnB=  .(用含α、β的代數(shù)式表示,其中n為正整數(shù))

2)當點P不在l1l2之間時.

若∠PAM的平分線與∠PBN的平分線交于點P,∠P1AM的平分線與∠P1BN的平分線交于點P2,,∠Pn1AM的平分線與∠Pn1BN的平分線交于點Pn,請直接寫出∠APnB的大。ㄓ煤α、β的代數(shù)式表示,其中n為正整數(shù))

【答案】1)①∠APB=α+β; ②∠AP1B=(α+β);∠APnB=;2)∠ApnB=

【解析】

1)過點PPQl1ABQ,則∠APQ=MAP=α,由∠APQ=MAP=α①,∠QPB=PBN=β②,①+②即可解決問題.

2)利用(1)的結論即可解決問題,分兩種情形寫出結論即可.

1)①過點PPQl1ABQ,則∠APQ=MAP=α …

l1l2

PQl2,

∴∠QPB=PBN=β … ②,

+②得∠APQ+BPQ=MAP+PBN,

∴∠APB=α+β

由上可知∠P1=α+β),∠p2=α+β),∠p3=α+β

∴∠APnB=

故∠AP1B=α+β);∠APnB=

2)當Pl1上方時,βα,∠APnB=

當點Pl2下方時,αβ,∠ApnB=

ApnB=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某市環(huán)保局決定購買A、B兩種型號的掃地車共40輛,對城區(qū)所有公路地面進行清掃.已知1A型掃地車和2B型掃地車每周可以處理地面垃圾100噸,2A型掃地車和1B型掃地車每周可以處理垃圾110噸.

1)求A、B兩種型號的掃地車每輛每周分別可以處理垃圾多少噸?

2)已知A型掃地車每輛價格為25萬元,B型掃地車每輛價格為20萬元,要想使環(huán)保局購買掃地車的資金不超過910萬元,但每周處理垃圾的量又不低于1400噸,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少資金是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象交于一、三象限內(nèi)的A、B兩點,與x軸交于C點,點A的坐標為(2,m),點B的坐標為(n,﹣2),tan∠BOC=
(1)求該反比例函數(shù)和一次函數(shù)的解析式.
(2)求△BOC的面積.
(3)P是x軸上的點,且△PAC的面積與△BOC的面積相等,求P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“校園安全”受到社會的廣泛關注,某校政教處對部分學生就校園安全知識的了解程度,進行了隨機抽樣調(diào)查,并繪制了如下兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)查的學生共有______名;

(2)請補全折線統(tǒng)計圖,并求出扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形紙片ABCD沿EF折疊后,EDBC于點G,點D、C分別落在點D′、C′位置上,若∠EFG=55°,∠BGE=_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在平面直角坐標系中,、兩點的坐標分別為,分別是軸、軸上的點.如果以點、、為頂點的四邊形是平行四邊形,則的坐標為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAD130°,∠B=∠D90°,點E,F分別是線段BC,DC上的動點.當AEF的周長最小時,則∠EAF的度數(shù)為( 。

A. 90°B. 80°C. 70°D. 60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,AOB是將等腰直角三角形AOB的頂點A經(jīng)過一次變換后所得的等腰直角三角形請在圖②③中保持O,B位置不動,對點A經(jīng)過一次(或一組)變換使變換后的△AOB仍是等腰直角三角形.要求:作出△AOB,并寫出點A的變換方式.

方式1:把點A向下平移4個單位;

方式2_________________;

方式3_________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩工程隊承包一項工程,如果甲工程隊單獨施工,恰好如期完成;如果乙工程隊單獨施工就要超過6個月才能完成,現(xiàn)在甲、乙兩隊先共同施工4個月,剩下的由乙隊單獨施工,則恰好如期完成.

(1)問原來規(guī)定修好這條公路需多少長時間?

(2)現(xiàn)要求甲、乙兩個工程隊都參加這項工程,但由于受到施工場地條件限制,甲、乙兩工程隊不能同時施工.已知甲工程隊每月的施工費用為4萬元,乙工程隊每月的施工費用為2萬元.為了結算方便,要求:甲、乙的施工時間為整數(shù)個月,不超過15個月完成.當施工費用最低時,甲、乙各施工了多少個月?

查看答案和解析>>

同步練習冊答案