已知二次函數(shù)y=ax2+bx+c的圖象如圖,則下列5個(gè)代數(shù)式:ac,a+b+c,4a-2b+c,2a+b,2a-b,其值大于0的個(gè)數(shù)為


  1. A.
    3
  2. B.
    2
  3. C.
    5
  4. D.
    4
B
分析:由開(kāi)口向上知a>0,由與y軸交于原點(diǎn)得到c=0,然后即可判斷ac的符號(hào);
由當(dāng)x=1時(shí),y<0,即可判斷a+b+c的符號(hào);
由當(dāng)x=-2時(shí),y>0,即可判斷4a-2b+c的符號(hào);
由開(kāi)口向上知a>0,由->1可以推出2a+b<0;
由開(kāi)口向上知a>0,->0可以推出2a與b的符號(hào),即可確定2a-b的符號(hào).
解答:①∵開(kāi)口向上,
∴a>0,
∵與y軸交于原點(diǎn),
∴c=0,
∴ac=0;
故本選項(xiàng)錯(cuò)誤;
②當(dāng)x=1時(shí),y=a+b+c<0,
∴a+b+c<0;
故本選項(xiàng)錯(cuò)誤;
③當(dāng)x=-2時(shí),y>0,
∴4a-2b+c>0;
故本選項(xiàng)正確;
④∵a>0,->1,
∴-b>2a,
∴b<-2a
∴2a+b<0;
故本選項(xiàng)錯(cuò)誤;
⑤∵a>0,->0,
∴b<0,
∴2a-b>0.
故本選項(xiàng)正確;
綜上所述,在ac,a+b+c,4a-2b+c,2a+b,2a-b中,其值大于0的個(gè)數(shù)為2個(gè);
故選B.
點(diǎn)評(píng):本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:
①a由拋物線開(kāi)口方向確定:開(kāi)口方向向上,則a>0;否則a<0;
②b由對(duì)稱軸和a的符號(hào)確定:由對(duì)稱軸公式x=判斷符號(hào)
③c由拋物線與y軸的交點(diǎn)確定:交點(diǎn)在y軸正半軸,則c>0;否則c<0
④b2-4ac由拋物線與x軸交點(diǎn)的個(gè)數(shù)確定:2個(gè)交點(diǎn),b2-4ac>0;1個(gè)交點(diǎn),b2-4ac=0;沒(méi)有交點(diǎn),b2-4ac<0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、已知二次函數(shù)y=a(x+1)2+c的圖象如圖所示,則函數(shù)y=ax+c的圖象只可能是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)y=ax+bx+c的圖象與x軸交于點(diǎn)A.B,與y軸交于點(diǎn) C.

(1)寫(xiě)出A. B.C三點(diǎn)的坐標(biāo);(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省廣州市海珠區(qū)九年級(jí)上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個(gè)根

C.a+b+c=0          D.當(dāng)x<1時(shí),y隨x的增大而減小

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

已知二次函數(shù)y=ax+bx+c(a≠0,a,b,c為常數(shù)),對(duì)稱軸為直線x=1,它的部分自變量與函數(shù)值y的對(duì)應(yīng)值如下表,寫(xiě)出方程ax2+bx+c=0的一個(gè)正數(shù)解的近似值________(精確到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說(shuō)法錯(cuò)誤的是:

(A)圖像關(guān)于直線x=1對(duì)稱

(B)函數(shù)y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個(gè)根

(D)當(dāng)x<1時(shí),y隨x的增大而增大

查看答案和解析>>

同步練習(xí)冊(cè)答案