【題目】
【發(fā)現(xiàn)】
如圖∠ACB=∠ADB=90°,那么點D在經(jīng)過A,B,C三點的圓上(如圖①)
【思考】
如圖②,如果∠ACB=∠ADB=a(a≠90°)(點C,D在AB的同側(cè)),那么點D還在經(jīng)過A,B,C三點的圓上嗎?
請證明點D也不在⊙O內(nèi).
【應用】
利用【發(fā)現(xiàn)】和【思考】中的結(jié)論解決問題:若四邊形ABCD中,AD∥BC,∠CAD=90°,點E在邊AB上,CE⊥DE.
(1)作∠ADF=∠AED,交CA的延長線于點F(如圖④),求證:DF為Rt△ACD的外接圓的切線;
(2)如圖⑤,點G在BC的延長線上,∠BGE=∠BAC,已知sin∠AED=,AD=1,求DG的長.
【答案】【思考】證明見試題解析;【應用】(1)證明見試題解析;(2).
【解析】
試題分析:【思考】假設點D在⊙O內(nèi),由圓周角定理及三角形外角的性質(zhì),可證得與條件相矛盾的結(jié)論,從而證得點D不在⊙O內(nèi);
【應用】(1)作出RT△ACD的外接圓,由發(fā)現(xiàn)可得點E在⊙O上,則∠ACD=∠FDA,又∠ACD+∠ADC=90°,有∠FDA+∠ADC=90°,即可得出DF是圓的切線;
(2)由【發(fā)現(xiàn)】和【思考】可得點G在過C、A、E三點的圓O上,證明四邊形AOGD是矩形,由已知條件解直角三角形ACD可得AC的長,即DG的長.
試題解析:【思考】如圖1,假設點D在⊙O內(nèi),延長AD交⊙O于點E,連接BE,則∠AEB=∠ACB,∵∠ADE是△BDE的外角,∴∠ADB>∠AEB,∴∠ADB>∠ACB,因此,∠ADB>∠ACB這與條件∠ACB=∠ADB矛盾,所以點D也不在⊙O內(nèi),所以點D即不在⊙O內(nèi),也不在⊙O外,點D在⊙O上;
【應用】
(1)如圖2,取CD的中點O,則點O是RT△ACD的外心,∵∠CAD=∠DEC=90°,∴點E在⊙O上,∴∠ACD=∠AED,∵∠FDA=∠AED,∴∠ACD=∠FDA,∵∠DAC=90°,∴∠ACD+∠ADC=90°,∴∠FDA+∠ADC=90°,∴OD⊥DF,∴DF為Rt△ACD的外接圓的切線;
(2)∵∠BGE=∠BAC,∴點G在過C、A、E三點的圓上,如圖3,又∵過C、A、E三點的圓是RT△ACD的外接圓,即⊙O,∴點G在⊙O上,∵CD是直徑,∴∠DGC=90°,∵AD∥BC,∴∠ADG=90°,∵∠DAC=90°,∴四邊形ACGD是矩形,∴DG=AC,∵sin∠AED=,∠ACD=∠AED,∴sin∠ACD=,在RT△ACD中,AD=1,∴=,∴CD=,∴AC==,∴DG=.
科目:初中數(shù)學 來源: 題型:
【題目】一粒木質(zhì)中國象棋棋子“車”,它的正面雕刻一個“車”字,它的反面是平的,將棋子從一定高度下拋,落地反彈后可能是“車”字面朝上,也可能是“車”字朝下.由于棋子的兩面不均勻,為了估計“車”字朝上的機會,某實驗小組做了棋子下拋實驗,并把實驗數(shù)據(jù)整理如下:
實驗次數(shù) | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 |
“車”字朝上的頻數(shù) | 14 | 18 | 38 | 47 | 52 |
| 78 | 88 |
相應的頻率 | 0.7 | 0.45 | 0.63 | 0.59 | 0.52 | 0.55 | 0.56 |
|
(1)請將表中數(shù)據(jù)補充完整,并畫出折線統(tǒng)計圖中剩余部分.
(2)如果實驗繼續(xù)進行下去,根據(jù)上表數(shù)據(jù),這個實驗的頻率將接近于該事件發(fā)生的機會,請估計這個機會約是多少?
(3)在(2)的基礎(chǔ)上,進一步估計:將該“車”字棋子,按照實驗要求連續(xù)拋2次,則剛好使“車”字一次字面朝上,一次朝下的可能性為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,對于任意三點A,B,C的“矩面積”,給出如下定義:
“水平底”a:任意兩點橫坐標差的最大值,“鉛垂高”h:任意兩點縱坐標差的最大值,則“矩面積”S=ah.
例如:三點坐標分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=20.
(1)已知點A(1,2),B(﹣3,1),P(0,t).
①若A,B,P三點的“矩面積”為12,求點P的坐標;
②直接寫出A,B,P三點的“矩面積”的最小值.
(2)已知點E(4,0),F(0,2),M(m,4m),N(n, ),其中m>0,n>0.
①若E,F,M三點的“矩面積”為8,求m的取值范圍;
②直接寫出E,F,N三點的“矩面積”的最小值及對應n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)學興趣小組同學進行測量大樹CD高度的綜合實踐活動,如圖,在點A處測得直立于地面的大樹頂端C的仰角為36°,然后沿在同一剖面的斜坡AB行走13米至坡頂B處,然后再沿水平方向行走6米至大樹腳底點D處,斜面AB的坡度(或坡比)i=1:2.4,那么大樹CD的高度約為(參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( )
A.8.1米 B.17.2米 C.19.7米 D.25.5米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,D是BC邊上一點,以DB為直徑的⊙O經(jīng)過AB的中點E,交AD的延長線于點F,連結(jié)EF.
(1)求證:∠1=∠F;
(2)若sinB=,EF=,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】股民老黃上星期五買進某股票1000股,每股35元,下表為本周內(nèi)每日該股票的漲跌情況(單位:元)(注:用正數(shù)記股價比前一日上升數(shù),用負數(shù)記股價比前一日下降數(shù))
星期 | 一 | 二 | 三 | 四 | 五 |
每股漲跌 | +2.4 | -0.8 | -2.9 | +0.5 | +2.1 |
(1)星期四收盤時,每股是多少元?
(2)本周內(nèi)最高價每股多少元?最低價每股多少元?
(3)根據(jù)交易規(guī)則,老黃買進股票時需付0.15%的手續(xù)費,賣出時需付成交額0.15%的手續(xù)費和0.1%的交易稅,如果老黃在星期五收盤前將全部股票賣出,他的收益情況如何?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某村耕地總面積為50公頃,且該村人均耕地面積y(單位:公頃/人)與總?cè)丝趚(單位:人)的函數(shù)圖象如圖所示,則下列說法正確的是( )
A.該村人均耕地面積隨總?cè)丝诘脑龆喽龆?/span>
B.當該村總?cè)丝跒?0人時,人均耕地面積為1公頃
C.若該村人均耕地面積為2公頃,則總?cè)丝谟?00人
D.該村人均耕地面積y與總?cè)丝趚成正比例
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某同學把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是( )
A.帶①去
B.帶②去
C.帶③去
D.帶①和②去
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com