【題目】幾何探究題

(1)發(fā)現(xiàn):在平面內(nèi),若BCa,ACb,其中ab

當(dāng)點A在線段BC上時(如圖1),線段AB的長取得最小值,最小值為   ;

當(dāng)點A在線段BC延長線上時(如圖2),線段AB的長取得最大值,最大值為   

(2)應(yīng)用:點A為線段BC外一動點,如圖3,分別以ABAC為邊,作等邊△ABD和等邊△ACE,連接CD、BE

證明:CDBE;

BC3,AC1,則線段CD長度的最大值為   

(3)拓展:如圖4,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(20),點B的坐標(biāo)為(5,0),點P為線AB外一動點,且PA2PMPB,∠BPM90°.請直接寫出線段AM長的最大值及此時點P的坐標(biāo).

【答案】(1)ab; a+b(2)①證明見解析;②4;(3)滿足條件的點P坐標(biāo)(2,)(2,﹣)AM的最大值為2+3

【解析】

1)根據(jù)點A位于線段BC上時,線段AB的長取得最小值,根據(jù)點A位于BC的延長線上時,線段AB的長取得最大值,即可得到結(jié)論;

2)①根據(jù)等邊三角形的性質(zhì)得到ADABACAE,∠BAD=∠CAE60°,推出△CAD≌△EAB,根據(jù)全等三角形的性質(zhì)得到CDBE

②由于線段CD長的最大值=線段BE的最大值,根據(jù)(1)中的結(jié)論即可得到結(jié)果;

3)將△APM繞著點P順時針旋轉(zhuǎn)90°得到△PBN,連接AN,得到△APN是等腰直角三角形,根據(jù)全等三角形的性質(zhì)得到PNPA2BNAM,根據(jù)當(dāng)N在線段BA的延長線時,線段BN取得最大值,即可得到最大值為2+3;如圖2,過PPEx軸于E,根據(jù)等腰直角三角形的性質(zhì)即可得到結(jié)論.

(1)∵當(dāng)點A在線段BC上時,線段AB的長取得最小值,最小值為BCAC,∵BCa,ACb,∴BCACab,

當(dāng)點A在線段BC延長線上時,線段AB的長取得最大值,最大值為BC+AC,∵BCa,ACb,∴BC+ACa+b,

故答案為:aba+b;

(2)①∵△ABDACE是等邊三角形,

ADAB,ACAE,∠BAD=∠CAE60°,

∴∠DAC=∠BAE,

ACDAEB中,

∴△ACD≌△AEB(SAS),

CDBE;

②∵線段CD的最大值=線段BE長的最大值,

(1)知,當(dāng)線段BE的長取得最大值時,點EBC的延長線上,

∴最大值為BC+CEBC+AC4,

故答案為:4;

(3)∵將APM繞著點P順時針旋轉(zhuǎn)90°得到PBN,連接AN,

APN是等腰直角三角形,

PNPA2,BNAM,

A的坐標(biāo)為(20),點B的坐標(biāo)為(50),

OA2,OB5,

AB3,

∴線段AM長的最大值=線段BN長的最大值,

∴當(dāng)N在線段BA的延長線時,線段BN取得最大值,

最大值=AB+AN,

ANAP2,

∴最大值為2+3;

如圖2,過PPEx軸于E,連接BE,

∵△APN是等腰直角三角形,

PEAE,

OEBOABAE532,

P(2,)

如圖3中,根據(jù)對稱性可知,當(dāng)點P在第四象限時,P(2,﹣)時,也滿足條件.

綜上述,滿足條件的點P坐標(biāo)(2,)(2,﹣),AM的最大值為2+3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知是等邊三角形,點D是直線BC上一點,以AD為一邊在AD的右側(cè)作等邊

如圖,點D在線段BC上移動時,直接寫出的大小關(guān)系;

如圖,點D在線段BC的延長線上或反向延長線上移動時,猜想的大小是否發(fā)生變化,若不變請直接寫出結(jié)論并選擇其中一種圖示進(jìn)行證明;若變化,請分別寫出圖、圖所對應(yīng)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)【問題提出】如圖1.△ABC是等邊三角形,點D在線段AB上.點E在直線BC上.且∠DEC=∠DCE.求證:BE=AD;

(2)【類比學(xué)習(xí)】如圖2.將條件“點D在線段AB上”改為“點D在線段AB的延長線上”,其他條件不變.判斷線段AB,BE,BD之間的數(shù)量關(guān)系,并說明理由.

(3)【擴(kuò)展探究】如圖3.△ABC是等腰三角形,AB=AC,∠BAC=120°,點D在線段AB的反向延長線上,點E在直線BC上,且∠DEC=∠DCE,【類比學(xué)習(xí)】中的線段AB、BE、BD之間的數(shù)量關(guān)系是否還成立?若成立,請說明理由;若不成立,請直接寫出線段AB,BE,BD之間的數(shù)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】看圖填空:已知如圖,AD⊥BCD,EG⊥BCG,∠E=∠1,

求證:AD平分∠BAC.

證明:∵AD⊥BCD,EG⊥BCG( 已知

∴∠ADC=90°,∠EGC=90°___________

∴∠ADC=∠EGC(等量代換

∴AD∥EG_____________

∴∠1=∠2___________

∠E=∠3___________

∵∠E=∠1( 已知

∴∠2=∠3___________

∴AD平分∠BAC___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“五一勞動節(jié)大酬賓!”,某商場設(shè)計的促銷活動如下:在一個不透明的箱子里放有4個相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“50元”的字樣.規(guī)定:在本商場同一日內(nèi),顧客每消費滿300元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回).商場根據(jù)兩小球所標(biāo)金額的和返還相等價格的購物券,購物券可以在本商場消費.某顧客剛好消費300元.
(1)該顧客至多可得到元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于50元的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖的七邊形ABCDEFG中,AB、ED的延長線相交于O點.若圖中∠1、2、3、4的外角的角度和為220°,則∠BOD的度數(shù)是( 。

A. 400 B. 450 C. 500 D. 600

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點D是△ABC所在平面內(nèi)一點,連接AD、CD

(1)如圖1,若∠A=28°,∠B=72°,∠C=11°,求∠ADC;

(2)如圖2,若存在一點P,使得PB平分∠ABC,同時PD平分∠ADC,探究∠A,∠P,∠C的關(guān)系并證明;

(3)如圖3,在 (2)的條件下,將點D移至∠ABC的外部,其它條件不變,探究∠A,∠P,∠C的關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義一種新運算“ab”的含義為:當(dāng)a≥b時,ab=a+b;當(dāng)ab時,ab=a-b.例如:3☆(-4=3+-4=-1,(-6)☆=-6-=-6

1)填空:(-4)☆3=______

2)如果(3x-4)☆(2x+8=3x-4-2x+8),求x的取值范圍;

3)如果(3x-7)☆(3-2x=2,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表是橘子的銷售額隨橘子賣出質(zhì)量的變化表:

質(zhì)量/千克

1

2

3

4

5

6

7

8

9

銷售額/元

2

4

6

8

10

12

14

16

18

1)這個表反映了哪兩個變量之間的關(guān)系?哪個是自變量?哪個是因變量?

2)當(dāng)橘子賣出5千克時,銷售額是_______元.

3)如果用表示橘子賣出的質(zhì)量,表示銷售額,按表中給出的關(guān)系,之間的關(guān)系式為______.

4)當(dāng)橘子的銷售額是100元時,共賣出多少千克橘子?

查看答案和解析>>

同步練習(xí)冊答案