【題目】用一根長度為的細繩圍成一個等腰三角形.
(1)如果所圍等腰三角形的腰長是底邊長的2倍,則此時的底邊長度是多少?
(2)所圍成的等腰三角形的腰長不可能等于,請簡單說明原因.
(3)若所圍成的等腰三角形的腰長為,請求出的取值范圍.
【答案】(1)此時的底邊長度是;(2)所圍成的等腰三角形的腰長不可能等于;(3).
【解析】
(1)設(shè)底邊長為xcm,則腰長為2xcm,根據(jù)周長公式列一元一次方程,解方程即可求得底邊的長;
(2)由題意直接利用三角形三邊關(guān)系進行檢驗即可說明原因;
(3)假設(shè)所圍成的等腰三角形的腰長為,由題意直接利用三角形三邊關(guān)系列不等式組進而即可求出的取值范圍.
解:(1)設(shè)底邊長度為,
∵腰長是底邊的2倍,
∴腰長為,
∴,
解得,,
∴此時的底邊長度是.
(2)原因:假設(shè)可以圍成腰長為4的等腰三角形,則該三角形的三邊長分別為:,,,
∵,
∴無法構(gòu)成三角形,故所圍成的等腰三角形的腰長不可能等于.
(3)∵等腰三角形的腰長為,
∴等腰三角形的底邊長為,由,得,
∴的取值范圍為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點A(—1,—5),且與正比例函數(shù)的圖象相交于點B(2,a).
(1)求a的值;
(2)求一次函數(shù)y=kx+b的表達式;
(3)在同一坐標系中,畫出這兩個函數(shù)的圖象,并求這兩條直線與y軸圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程x2-4x+k+1=0
(1)若=-1是方程的一個根,求k值和方程的另一根;
(2)設(shè)x1,x2是關(guān)于x的方程x2-4x+k+1=0的兩個實數(shù)根,是否存在實數(shù)k,使得x1x2>x1+x2成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與x軸,y軸的交點為A,B兩點,點A,B的縱坐標、橫坐標如圖所示.
(1)求直線AB的表達式及△AOB的面積S△AOB.
(2)在x軸上是否存在一點,使S△PAB=3?若存在,求出P點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工程,乙工程隊單獨先做10天后,再由甲、乙兩個工程隊合作20天就能完成全部工作,已知甲工程隊單獨完成此工程所需天數(shù)是乙工程隊單獨完成此工程所需天數(shù)的.
(1)求甲、乙工程隊單獨完成此工程各需多少天;
(2)甲工程隊每天的費用為0.67萬元,乙工程每天的費用為0.33萬元,該工程的預(yù)算費用為20萬元,若甲、乙工程隊一起合作完成該工程,請問工程費用是否夠用?若不夠用,應(yīng)追加多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,,,于點,,點在上,射線,分別交,兩邊于,兩點
(1)當點與點重合時,如圖11—2所示,直接寫出:
①與之間的數(shù)量關(guān)系:_____________________;
②與之間的數(shù)量關(guān)系:_______________________;
(2)當點在線段上時(不與端點重合,如圖2所示,則(1)中②的結(jié)論還成立嗎?若成立,請證明這個結(jié)論;若不成立,請舉反例說明
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC中,AB=BC,DE⊥AB于點E,DF⊥BC于點D,交AC于F.
⑴若∠AFD=155°,求∠EDF的度數(shù);
⑵若點F是AC的中點,求證:∠CFD=∠B.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C、D是半圓O上的兩點,且OD∥BC,OD與AC交于點E.
(1)若∠B=70°,求弧CD的度數(shù);
(2)若AB=26,DE=8,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=30°,以AB為直徑的⊙O交BC于點D,交AC于點E,連結(jié)DE,過點B作BP平行于DE,交⊙O于點P,連結(jié)EP、CP、OP.
(1)BD=DC嗎?說明理由;
(2)求∠BOP的度數(shù);
(3)求證:CP是⊙O的切線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com