【題目】如圖,在等邊△ABC中,P為BC上一點,D為AC上一點,且∠APD=60°,BP=1,CD=.
(1)求證:△ABP∽△PCD;
(2)求△ABC的邊長.
【答案】(1證明見解析;(2)3.
【解析】
(1)根據(jù)等邊三角形性質(zhì)求出AB=BC=AC,∠B=∠C=60°,推出∠BAP=∠DPC,即可得出結(jié)論;
(2)與相似三角形的性質(zhì)得出比例式,代入求出AB即可.
(1)∵△ABC是等邊三角形,
∴AB=BC=AC,∠B=∠C=60°,
∴∠BAP+∠APB=180°﹣60°=120°,
∵∠APD=60°,
∴∠APB+∠DPC=180°﹣60°=120°,
∴∠BAP=∠DPC,
即∠B=∠C,∠BAP=∠DPC,
∴△ABP∽△PCD;
(2)解:∵△ABP∽△PCD,
∴,
∵CD=,CP=BC﹣BP=x﹣1,BP=1,
即,
解得:AB=3.
即△ABC的邊長為3
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形紙片中,,點是邊上的一點,將紙片沿折疊,點落在處,恰好經(jīng)過的中點,則的度數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,∠B=30°,O是線段AB上的一個動點,以O為圓心,OB為半徑作⊙O交BC于點D,過點D作直線AC的垂線,垂足為E.
(1)求證:DE是⊙O的切線;
(2)設(shè)OB=x,求∠ODE的內(nèi)部與△ABC重合部分的面積y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l:y=﹣x+2與x軸交于點B,與y軸交于點A,以AB為斜邊作等腰直角△ABC,使點C落在第一象限,過點C作CD⊥AB于點D,作CE⊥x軸于點E,連接ED并延長交y軸于點F.
(1)如圖(1),點P為線段EF上一點,點Q為x軸上一點,求AP+PQ的最小值.
(2)將直線l進(jìn)行平移,記平移后的直線為l1,若直線l1與直線AC相交于點M,與y軸相交于點N,是否存在這樣的點M、點N,使得△CMN為等腰直角三角形?若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)銷一種健身球,已知這種健身球的成本價為每個20元,市場調(diào)查發(fā)現(xiàn),該種健身球每天的銷售量y(個)與銷售單價x(元)有如下關(guān)系:y=﹣20x+80(20≤x≤40),設(shè)這種健身球每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該種健身球銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種健身球的銷售單價不高于28元,該商店銷售這種健身球每天要獲得150元的銷售利潤,銷售單價應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點G.點F是CD上一點,且滿足,連接AF并延長交⊙O于點E.連接AD、DE,若CF=2,AF=3.給出下列結(jié)論:
①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.
其中正確的是( 。
A. ①②④ B. ①②③ C. ②③④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角△ABC 中 BC=a,AC=b,AB=c,記三角形 ABC 的面積為 S.
(1)求證:S=absinC;
(2)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,修正帶是一種白色不透明顏料,涂在紙上可以遮蓋錯字,為學(xué)習(xí)和工作提供了方便.某品牌修正帶原零售價為每個5元,恒誠文具店為學(xué)生們推出兩種優(yōu)惠方案,第一種方案:“凡一次性購買兩個以上(含兩個),兩個按原價,其余按原價的五折付款”;第二種方案:“凡一次性購買兩個以上(含兩個),全部按原價的七折付款”.在購買數(shù)量相同的情況下,若要使第一種方案付款更少,則至少需要購買修正帶( )
A.4個B.5個C.6個D.7個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個長為12cm,寬為5cm,高為8cm的長方體,一只蜘蛛從一條側(cè)棱的中點A沿著長方體表面爬行到頂點B去捕捉螞蟻,此時蜘蛛爬行的最短距離是( )
A.13 cmB.15 cmC.21 cmD.25cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com