【題目】類比等腰三角形的定義,我們定義:有三條邊相等的凸四邊形叫做“準等邊四邊形”.
(1)已知:如圖1,在“準等邊四邊形”ABCD中,BC≠AB,BD⊥CD,AB=3,BD=4,求BC的長;
(2)在探究性質(zhì)時,小明發(fā)現(xiàn)一個結論:對角線互相垂直的“準等邊四邊形”是菱形.請你判斷此結論是否正確,若正確,請說明理由;若不正確,請舉出反例;
(3)如圖2,在△ABC中,AB=AC=,∠BAC=90°.在AB的垂直平分線上是否存在點P,使得以A,B,C,P為頂點的四邊形為“準等邊四邊形”. 若存在,請求出該“準等邊四邊形”的面積;若不存在,請說明理由.
【答案】(1)5;(2)正確,證明詳見解析;(3)存在,有四種情況,面積分別是:,,,
【解析】
(1)根據(jù)勾股定理計算BC的長度,
(2)根據(jù)對角線互相垂直平分的四邊形是菱形判斷,
(3)有四種情況,作輔助線,將四邊形分成兩個三角形和一個四邊形或兩個三角形,相加可得結論.
(1)∵BD⊥CD
∴∠BDC=90°,BC>CD
∵在“準等邊四邊形”ABCD中,BC≠AB,
∴AB=AD=CD=3,
∵BD=4,
∴BC=,
(2)正確.
如圖所示:
∵AB=AD
∴ΔABD是等腰三角形.
∵AC⊥BD.
∴AC垂直平分BD.
∴BC=CD
∴CD =AB=AD=BC
∴四邊形 ABCD是菱形.
(3)存在四種情況,
如圖2,四邊形ABPC是“準等邊四邊形”,過C作于F,則,
∵EP是AB的垂直平分線,
∴ ,
∴四邊形AEFC是矩形,
在中, ,
∴ ,
∵
∴
∴
如圖4,四邊形ABPC
∵ ,
∴是等邊三角形,
∴ ;
如圖5,四邊形ABPC是“準等邊四邊形”,
∵ ,PE是AB的垂直平分線,
∴ E是AB的中點,
∴ ,
∴
∴
如圖6,四邊形ABPC是“準等邊四邊形”,過P作于F,連接AP,
∵,
∴,
∴
科目:初中數(shù)學 來源: 題型:
【題目】兩地相距300,甲、乙兩車同時從地出發(fā)駛向地,甲車到達地后立即返回,如圖是兩車離地的距離()與行駛時間()之間的函數(shù)圖象.
(1)求甲車行駛過程中與之間的函數(shù)解析式,并寫出自變量的取值范圍.
(2)若兩車行駛5相遇,求乙車的速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD中,E在AD上,F(xiàn)在AB上,EF⊥CE于E,DE=AF=2,矩形的周長為24,則BF的長為( 。
A. 3 B. 4 C. 5 D. 7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知⊙O的直徑為10,點A,點B,點C在⊙O上,∠CAB的平分線交⊙O于點D.
(1)如圖①,若BC為⊙O的直徑,AB=6,求AC,BD,CD的長;
(2)如圖②,若∠CAB=60°,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,拋物線的頂點D的坐標為(1,-4),且與y軸交于點
C(0,3)
求該函數(shù)的關系式;
求改拋物線與x軸的交點A,B的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,分別以AB、AD為邊向外作等邊△ABE、△ADF,延長CB交AE于點G,點G在點A、E之間,連接CE、CF,EF,則以下四個結論一定正確的是:①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等邊△;④CG⊥AE( )
A. 只有①② B. 只有①②③ C. 只有③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市射擊隊甲、乙兩名隊員在相同的條件下各射耙10次,每次射耙的成績情況如圖所示:
(1)請將下表補充完整:
(2)請從下列三個不同的角度對這次測試結果進行分析:
①從平均數(shù)和方差相結合看, 的成績好些;
②從平均數(shù)和中位數(shù)相結合看, 的成績好些;
③若其他隊選手最好成績在9環(huán)左右,現(xiàn)要選一人參賽,你認為選誰參加,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABC中,ACB 90,BAC 30, AB2,D是AB邊上的一個動點(點D不與點A、B重合),連接CD,過點D作CD的垂線交射線CA于點E.當ADE為等腰三角形時,AD的長度為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com