如圖,點(diǎn)G為△ABC重心,DE經(jīng)過點(diǎn)G,DE∥BC,CEF∥AB,S△ABC=18,求四邊形BDEF面積.
分析:由于點(diǎn)G為△ABC重心,利用重心的性質(zhì)等等等
AD
AB
=
2
3
,而由△ADE∽△ABC得到
S△ADE
S△ABC
=(
2
3
)2
,然后利用已知條件可以求出S△ADE=8,和S△CEF,最后根據(jù)圖形可以求出四邊形BDEF的面積.
解答:解:∵點(diǎn)G為△ABC重心,DE經(jīng)過點(diǎn)G,DE∥BC,
AD
AB
=
2
3
,
∵△ADE∽△ABC,
S△ADE
S△ABC
=(
2
3
)2
,
∵S△ABC=18,∴S△ADE=8,
同理可得 S△CEF=2,
∴四邊形BDEF的面積等于18-8-2=8.
點(diǎn)評(píng):此題分別考查了相似三角形的判定與性質(zhì)、重心的性質(zhì)及平行線的性質(zhì),解題時(shí)首先利用重心的性質(zhì),然后利用相似三角形的判定與性質(zhì)即可解決問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,點(diǎn)H為△ABC的垂心,以AB為直徑的⊙O1和△BCH的外接圓⊙O2相交于點(diǎn)D,延長AD交CH于點(diǎn)P,
求證:點(diǎn)P為CH的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、尺規(guī)作圖(不寫作法,但要保留作圖痕跡)
如圖,點(diǎn)E為∠ABC邊AC上一點(diǎn),過點(diǎn)E作直線MN,使MN∥AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)P為△ABC的內(nèi)心,延長AP交△ABC的外接圓⊙O于D,過D作DE∥BC,交AC的延長線于E點(diǎn).①則直線DE與⊙O的位置關(guān)系是
 
;②若AB=4,AD=6,CE=3,則DE=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)G為△ABC的重心,DE過點(diǎn)G,且DE∥BC,EF∥AB,那么CF:BF=
1:2
1:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)E為△ABC邊AB上一點(diǎn),AC=BC=BE,AE=EC,BD⊥AC于D,求∠CBD的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案