已知拋物線y=-x2+2mx-m2-m+2.
(1)若拋物線與x軸有兩個交點,與y軸交于點(0,-4),求出這條拋物線的解析式及頂點C的坐標;
(2)試說明對任何實數(shù)m,拋物線的頂點都在某一次函數(shù)的圖象L上,并求出L的解析式;
(3)若(2)中直線L交x軸于點A,試在y軸求一點M,使|MC-MA|的值最大(C為(1)中拋物線的頂點);
(4)若(1)中所求拋物線的對稱軸與x軸交于點B.那么在該對稱軸上是否存在點P,使⊙P與直線L和x軸同時相切.若存在,求出點P的坐標;若不存在,請說明理由.
【答案】分析:(1)將(0,-4)代入二次函數(shù)解析式即可得出m的值,再利用二次函數(shù)圖象與x軸交點個數(shù)判斷方法得出m的取值范圍,即可得出答案;
(2)由y=-(x-m)2-m+2 知頂點為(m,-m+2),分別取m=0,2得點(0,2)和(2,0)求出過這兩點的直線解析式,利用當x=m時,y=-m+2,得出對任何實數(shù)m,拋物線的頂點都在一次函數(shù)的圖象L上;
(3)根據(jù)A關(guān)于y軸對稱的點D(-2,0),利用C為(1)中拋物線的頂點,求出直線CD的解析式,進而得出|NC-NA|=|NC-ND|<CD=|MC-MA|,得出M點坐標;
(4)利用切線的性質(zhì)以及勾股定理和等腰直角三角形的性質(zhì)求出即可.
解答:解:(1)∵拋物線與y軸交于點(0,-4),
∴將(0,-4)代入二次函數(shù)解析式得:
-m2-m+2=-4,
∴m2+m-6=0,
解得:m1=2,m2=-3,
∵拋物線與x軸有兩個交點,
∴△=(2m)2-4(m2+m-2)=-4m+8=-4m+8>0.
∴m<2.
故取m=-3.
∴拋物線的解析式為:
y=-x2-6x-4,
=-(x2+6x)-4,
=-(x+3) 2+5,
∴頂點(-3,5);

(2)由y=-(x-m)2-m+2 知頂點為(m,-m+2).
分別取m=0,2得點(0,2)和(2,0)過這兩點的直線解析式為:設(shè)為y=kx+b,
,
解得:,
∴直線解析式為:y=-x+2,
當x=m時,y=-m+2,
∴對任何實數(shù)m,拋物線的頂點都在某一次函數(shù)的圖象L上,
L的解析式為:y=-x+2;

(3)A關(guān)于y軸對稱的點D(-2,0),
∵C為(1)中拋物線的頂點,
∴設(shè)直線CD的解析式為:y=kx+b,
,
解得:,
∴直線CD的解析式為:y=-5x-10,
∴圖象與y軸的交點(0,-10)即為所求的點M.
設(shè)N是y軸上異于M的一點,則△NDC中,
|NC-NA|=|NC-ND|<CD=|MC-MA|.
∴M(0,-10)時,|MC-MA|的值最大;

(4)∵C點坐標為:(-3,5),A點坐標為:(2,0),B點坐標為:(-3,0),
∴AB=BC=5,∵∠CBA=90°,
∴∠BAC=∠BCA=45°,
∵當⊙P1與直線L相切與點Q1,連接Q1P1,
∴Q1P1⊥AC,
∴∠P1CQ1=∠CP1Q1=45°,
∴CQ1=Q1P1
設(shè)P1的坐標為:(-3,y),
∴CP1=5-y,
P1Q1=CQ1=y,
=+,
∴(5-y)2=y2+y2
整理得出;y2+10y-25=0,
解得:y1=5-5,y2=-5-5,
∴滿足條件的點有兩個,即(-3,5-5)和(-3,-5-5)(如圖).
點評:此題主要考查了待定系數(shù)法求一次函數(shù)解析式以及二次函數(shù)的綜合應(yīng)用和切線的性質(zhì)定理等知識,利用數(shù)形結(jié)合得出∠P1CQ1=∠CP1Q1=45°,以及CQ1=Q1P1是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-8x+c的頂點在x軸上,則c等于( 。
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范圍,并證明A、B兩點都在原點O的左側(cè);
(2)若拋物線與y軸交于點C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=-x2+bx+c與x軸負半軸交于點A,與y軸正半軸交于點B,且OA=OB.
精英家教網(wǎng)(1)求b+c的值;
(2)若點C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
(3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點P,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•虹口區(qū)一模)如圖,在平面直角坐標系xOy中,已知拋物線y=x2+bx+c經(jīng)過A(0,3),B(1,0)兩點,頂點為M.
(1)求b、c的值;
(2)將△OAB繞點B順時針旋轉(zhuǎn)90°后,點A落到點C的位置,該拋物線沿y軸上下平移后經(jīng)過點C,求平移后所得拋物線的表達式;
(3)設(shè)(2)中平移后所得的拋物線與y軸的交點為A1,頂點為M1,若點P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黔南州)已知拋物線y=x2-x-1與x軸的交點為(m,0),則代數(shù)式m2-m+2011的值為(  )

查看答案和解析>>

同步練習(xí)冊答案