【題目】如圖,一塊直角三角形的紙片,,,.現(xiàn)將直角邊沿直線折疊,使它落在斜邊上,且與重合,則的長為( )

A.4B.3C.D.2

【答案】B

【解析】

由勾股定理可求BC=8,由折疊可得AC=AE=6,CD=DE,∠C=AED=DEB=90°,設(shè)CD=DE=x,表示出BD,然后在RtDEB中,利用勾股定理列式計算即可得解.

RtABC中,BC==8
∵將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,
AC=AE=6CD=DE,∠C=AED=DEB=90°
BE=AB-AE=10-6=4
設(shè)CD=DE=xcm,則DB=BC-CD=8-x
RtDEB中,由勾股定理,得x2+42=8-x2,
解得x=3
CD=3,
故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中考體育測試前,某區(qū)教育局為了了解選報引體向上的初三男生的成績情況,隨機抽測了本區(qū)部分選報引體向上項目的初三男生的成績,并將測試得到的成績繪成了下面兩幅不完整的統(tǒng)計圖:

請你根據(jù)圖中的信息,解答下列問題:

(1)補全條形圖;

(2)直接寫出在這次抽測中,測試成績的眾數(shù)和中位數(shù);

(3)該區(qū)體育中考選報引體向上的男生共有1800人,如果體育中考引體向上達6個以上(含6個)得滿分,請你估計該區(qū)體育中考中選報引體向上的男生能獲得滿分的有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與直線經(jīng)過點,且相交于另一點,拋物線與軸交于點,與軸交于另一點,過點的直線交拋物線于點,且軸,連接,當(dāng)點在線段上移動時(不與、重合),下列結(jié)論正確的是( )

A.B.

C.D.四邊形的最大面積為13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某測量小組為了測量山BC的高度,在地面A處測得山頂B的仰角45°,然后沿著坡度為i=1:的坡面AD走了200米達到D處,此時在D處測得山頂B的仰角為60°,求山高BC(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加快城市群的建設(shè)與發(fā)展,在AB兩城市間新建一條城際鐵路,建成后,鐵路運行里程由現(xiàn)在的120km縮短至114km,城際鐵路的設(shè)計平均時速要比現(xiàn)行的平均時速快110km,運行時間僅是現(xiàn)行時間的,求建成后的城際鐵路在A,B兩地的運行時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖邊長為1的正方形ABCD,AC 、DB交于點HDE平分ADB,AC于點E聯(lián)結(jié)BE并延長,交邊AD于點F

1求證DC=EC;

2求△EAF的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,O為坐標原點,四邊形OABC為矩形,B(5,2),點DOA的中點,動點P在線段BC上以每秒2個單位長的速度由點CB 運動.設(shè)動點P的運動時間為t

(1)當(dāng)t為何值時,四邊形PODB是平行四邊形?

(2)在直線CB上是否存在一點Q,使得O、D、Q、P四點為頂點的四邊形是菱形?若存在,求t的值,并求出Q點的坐標;若不存在,請說明理由.

(3)在線段PB上有一點M,且PM=2.5,當(dāng)P運動多少,四邊形OAMP的周長最小值為多少,并畫圖標出點M的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊中,點上,點的延長線上,且有,探究的大小關(guān)系.

1)如圖1,當(dāng)點的中點時,如圖1,確定線段與的大小關(guān)系.請你直接寫出結(jié)論:__________(填“”,“”或“)

2)特例啟發(fā),解答題目

解:如圖2,的大小關(guān)系是:___________ (填“”,“”或“)

理由如下:如圖2,過點,交于點(請你補充完成以下解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標系中,O為坐標原點.已知反比例函數(shù)y=(k>0)的圖象經(jīng)過點A(2,m),過點A作AB⊥x軸于點B,且△AOB的面積為

(1)求k和m的值;

(2)求當(dāng)x≥1時函數(shù)值y的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案