【題目】如圖所示,在ABC中,ABAC,∠BAC90°,∠1=∠2,CEBDBD的延長線于點ECE1,延長CE、BA交于點F

1)求證:ADB≌△AFC

2)求BD的長度.

【答案】1)見解析;(22

【解析】

1)欲證明ADB≌△AFC,只要證明∠ACF=∠2即可.

2)由(1)可知BDCF,只要證明BCBF,可得ECEF1,即可解決問題.

證明:(1)如圖,

∵∠BAC90°

∴∠2+F90°,∠ACF+F90°

∴∠ACF=∠2,

ACFABD中,

,

∴△ACF≌△ABD

2)∵△ACF≌△ABD

BDCF,

BECF,

∴∠BEC=∠BEF90°,

∵∠1+BCE90°,∠2+F90°,

∴∠BCF=∠F,

BCBF,CEEF1

BDCF2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC平分∠BAD,CEABE,CFADF,且BCCD,

1)求證:BCE≌△DCF

2)若AB15AD7,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC14,DE是線段AB的垂直平分線.

1)若△EBC的周長是24,求BC的長;

2)若∠Ax°,求∠EBC的度數(shù)(用含x的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ABAC,AC的垂直平分線DEAC于點D,交BC于點E,且∠BAE90°,若DE1,則BE=( 。

A.4B.3C.2D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACBECD都是等邊三角形,點A、D、E在同一直線上,連接BE.

(1)求證:AD=BE;

(2)求∠AEB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列條件中:A+B=∠C,A:∠B:∠C156,A90°﹣∠B,A=∠BC中,能確定△ABC是直角三角形的條件有(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】元旦放假期間,小明和小華準(zhǔn)備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同

(1)求小明選擇去白鹿原游玩的概率;

(2)用樹狀圖或列表的方法求小明和小華選擇去同一個地方游玩的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的周長為16 cm,∠BAD120°對角線ACBD相交于點O,過點OBC的垂線交BC于點E,交AD于點F,求EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在等邊三角形ABC中.DAB邊上的動點,以CD為一邊,向上作等邊三角形EDC.連接AE.

(l)求證:DBCEAC

(2)試說明AEBC的理由.

(3)如圖②,當(dāng)圖①中動點D運動到邊BA的延長線上時,所作仍為等邊三角形,猜想是否仍有AEBC?若成立請證明.

查看答案和解析>>

同步練習(xí)冊答案