【題目】已知如圖,在三角形中, ,于點于點,,交于點,,則____.

【答案】

【解析】

先判定出ABD是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得AD=BD,再根據(jù)同角的余角相等求出∠CAD=CBE,然后利用角邊角證明ADCBDF全等,根據(jù)全等三角形對應邊相等可得BF=AC,再根據(jù)等腰三角形三線合一的性質(zhì)可得AC=2AE,從而得

ADBC,∠BAD=45°
∴△ABD是等腰直角三角形,
AD=BD,
BEAC,ADBC
∴∠CAD+ACD=90°,
CBE+ACD=90°
∴∠CAD=CBE,
ADCBDF中,

,

∴△ADC≌△BDFASA),
BF=AC
AB=BC,BEAC,
AC=2AE,
BF=2AE,

又∵AE3cm,

BF6cm.

故答案是:6cm.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知a≠0,在同一直角坐標系中,函數(shù)y=axy=ax2的圖象有可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在有些情況下,不需要計算出結(jié)果也能把絕對值符號去掉.例如:|6+7|6+7;|67|76|76|76;|67|6+7

1)根據(jù)上面的規(guī)律,把下列各式寫成去掉絕對值符號的形式:

|721|   ;②|0.8|   ;③||   

2)數(shù)a在數(shù)軸上的位置如圖所示,則|a2.5|   

Aa2.5

B.2.5a

Ca+2.5

D.﹣a2.5

3)利用上述介紹的方法計算或化簡:

||+||||+;

||+||||+2),其中a2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形中,,.分別為、的中點,連接、EF,則的周長為

A. 9B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB6AC8,BC10,PBC邊上一動點,過線段AP上的點MDEAP,交邊AB于點D交邊AC于點E,點NDE中點,若四邊形ADPE的面積為18,則AN的最大值=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AEADBD于點E,CFBCBD于點F.

1證明:ADE≌△CBF

2)連接AF、CE四邊形AECF是菱形嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一條數(shù)軸在原點O和點B處各折一下,得到一條“折線數(shù)軸”.圖中點A表示﹣10,點B表示10,點C表示18,我們稱點A和點C在數(shù)軸上相距28個長度單位,動點P從點A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運動,從點O運動到點B期間速度變?yōu)樵瓉淼囊话;點P從點A出發(fā)的同時,點Q從點C出發(fā),以1單位/秒的速度沿著“折線數(shù)軸”的負方向運動,當點P到達B點時,點P、Q均停止運動.設運動的時間為t秒.問:

1)用含t的代數(shù)式表示動點P在運動過程中距O點的距離;

2P、Q兩點相遇時,求出相遇時間及相遇點M所對應的數(shù)是多少?

3)是否存在P、O兩點在數(shù)軸上相距的長度與Q、B兩點在數(shù)軸上相距的長度相等時?若存在,請直接寫出t的取值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】青島交運集團出租車司機張師傅某天下午的營運全是在東西走向的吉林路上進行的,如果規(guī)定向東為正,向西為負,他這天下午行車里程單位:千米如下:,,,,,,,,,

(1)張師傅這天最后到達目的地時,在下午出車時的出發(fā)地哪個方向?距離出發(fā)地多遠?

(2)張師傅這天下午共行車多少千米?

(3)若每千米耗油,則這天下午張師傅用了多少升油?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的正方形ABCD中,動點E,F分別在邊AB,CD上,將正方形ABCD沿直線EF折疊,使點B的對應點M始終落在邊AD上(點M不與點A,D重合),點C落在點N處,MNCD交于點P,設BE=x。

1)當AM=時,求x的值;

2)隨著點M在邊AD上位置的變化,ΔPDM的周長是否發(fā)生變化?如變化,請說明理由;如不變,請求出該定值;

3)若AM=a,四邊形BEFC的面積為S,求Sa之間的函數(shù)表達式。

查看答案和解析>>

同步練習冊答案