【題目】已知的函數(shù),自變量的取值范圍為,下表是的幾組對(duì)應(yīng)值

0

1

2

3

3.5

4

4.5

1

2

3

4

3

2

1

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的之間的變化規(guī)律,對(duì)該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整:

(1)如圖,在平面直角坐標(biāo)系中,指出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn). 根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象.

(2)根據(jù)畫出的函數(shù)圖象填空.

①該函數(shù)圖象與軸的交點(diǎn)坐標(biāo)為_____.

②直接寫出該函數(shù)的一條性質(zhì).

【答案】(1)見解析;(2)(5,0);②見解析.

【解析】

1)根據(jù)坐標(biāo),連接點(diǎn)即可得出函數(shù)圖像;

2)①根據(jù)圖像,當(dāng)x≥3時(shí),根據(jù)兩點(diǎn)坐標(biāo)可得出函數(shù)解析式,進(jìn)而可得出與軸的交點(diǎn)坐標(biāo);

②根據(jù)函數(shù)圖像,相應(yīng)的自變量的取值范圍,可得出其性質(zhì).

(1) 如圖:

(2)(5,0)

根據(jù)圖像,當(dāng)x≥3時(shí),函數(shù)圖像為一次函數(shù),

設(shè)函數(shù)解析式為,將(3,4)和(4,2)兩點(diǎn)代入,即得

解得

即函數(shù)解析式為

x軸的交點(diǎn)坐標(biāo)為(5,0);

②答案不唯一.如下幾種答案供參考:

當(dāng)0≤x≤3時(shí),函數(shù)值yx值增大而增大;

當(dāng)x≥3時(shí),函數(shù)值yx值增大而減;

當(dāng)x=3時(shí),函數(shù)有最大值為4;

該函數(shù)沒(méi)有最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說(shuō)法:①2a+b=0,②當(dāng)﹣1≤x≤3時(shí),y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函數(shù)圖象上,當(dāng)0<x1<x2時(shí),y1<y2,其中正確的是( 。

A. ①②④ B. ①③ C. ①②③ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y=的圖象上.若點(diǎn)B在反比例函數(shù)y=的圖象上,則k的值為(

A.-4 B.4 C.-2 D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某港口在某天從0時(shí)到12時(shí)的水位情況變化曲線.

1)在這一問(wèn)題中,自變量是什么?

2)大約在什么時(shí)間水位最深,最深是多少?

3)大約在什么時(shí)間段水位是隨著時(shí)間推移不斷上漲的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商家計(jì)劃從廠家采購(gòu)空調(diào)和冰箱兩種產(chǎn)品共臺(tái),空調(diào)和冰箱的采購(gòu)單價(jià)與銷售單價(jià)如表所示:

采購(gòu)單價(jià)

銷售單價(jià)

空調(diào)

冰箱

若采購(gòu)空調(diào)臺(tái),且所采購(gòu)的空調(diào)和冰箱全部售完,求商家的利潤(rùn);

廠家有規(guī)定,采購(gòu)空調(diào)的數(shù)量不少于臺(tái),且空調(diào)采購(gòu)單價(jià)不低于元,問(wèn)商家采購(gòu)空調(diào)多少臺(tái)時(shí)總利潤(rùn)最大?并求最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名同學(xué)參加少年科技創(chuàng)新選拔賽,六次比賽的成績(jī)?nèi)缦拢?/span>

甲:87 93 88 93 89 90

乙:85 90 90 96 89

1)甲同學(xué)成績(jī)的中位數(shù)是__________

2)若甲、乙的平均成績(jī)相同,則__________;

3)已知乙的方差是,如果要選派一名發(fā)揮穩(wěn)定的同學(xué)參加比賽,應(yīng)該選誰(shuí)?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(jià)(元)符合一次函數(shù),且時(shí),;時(shí),

1)求一次函數(shù)的表達(dá)式;

2)若該商場(chǎng)獲得利潤(rùn)為元,試寫出利潤(rùn)與銷售單價(jià)之間的關(guān)系式;銷售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?

3)若該商場(chǎng)獲得利潤(rùn)不低于500元,試確定銷售單價(jià)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1:在四邊形ABCD中,ABAD,BAD120°,BADC90°E、F分別是BCCD上的點(diǎn).且∠EAF60°.探究圖中線段BE、EFFD之間的數(shù)量關(guān)系.

小王同學(xué)探究此問(wèn)題的方法是,延長(zhǎng)FD到點(diǎn)G,使DGBE.連結(jié)AG,先證明ABE≌△ADG,再證明AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是   

探索延伸:

如圖2,若在四邊形ABCD中,ABAD,BD180°E、F分別是BCCD上的點(diǎn),且∠EAFBAD,上述結(jié)論是否仍然成立,并說(shuō)明理由;

實(shí)際應(yīng)用:

如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°A處,艦艇乙在指揮中心南偏東70°B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn)1.5小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F處,且兩艦艇之間的夾角為70°,試求此時(shí)兩艦艇之間的距離?

查看答案和解析>>

同步練習(xí)冊(cè)答案