【題目】如圖,點O是△ABC內(nèi)一點,連結(jié)OB、OC,并將AB、OB、OC、AC的中點D、E、F、G依次連結(jié),得到四邊形DEFG.
(1)求證:四邊形DEFG是平行四邊形;
(2)若M為EF的中點,OM=3,∠OBC和∠OCB互余,求DG的長度.
【答案】(1)證明見解析;(2)6.
【解析】試題分析:(1)根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,從而得到DE=EF,DG∥EF,再利用一組對邊平行且相等的四邊形是平行四邊形證明即可;
(2)先判斷出∠BOC=90°,再利用直角三角形斜邊的中線等于斜邊的一半,求出EF即可.
試題解析:(1)∵D、G分別是AB、AC的中點,∴DG∥BC,DG=BC,∵E、F分別是OB、OC的中點,∴EF∥BC,EF=BC,∴DE=EF,DG∥EF,∴四邊形DEFG是平行四邊形;
(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M(jìn)為EF的中點,OM=3,∴EF=2OM=6.
由(1)有四邊形DEFG是平行四邊形,∴DG=EF=6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電腦經(jīng)銷商計劃同時購進(jìn)一批電腦機箱和液晶顯示器,若購進(jìn)電腦機箱10臺,和液晶顯示器8臺,共需要資金7000元,若購進(jìn)電腦機箱兩臺和液晶顯示器5臺,共需要資金4120元.
(1)每臺電腦機箱、液晶顯示器的進(jìn)價各是多少元?
(2)該經(jīng)銷商計劃購進(jìn)這兩種商品共50臺,而可用于購買這兩種商品的資金不超過22240元,根據(jù)市場行情,銷售電腦機箱,液晶顯示器一臺分別可獲得10元和160元,改經(jīng)銷商希望銷售完這兩種商品,所獲得利潤不少于4100元,試問:該經(jīng)銷商有幾種進(jìn)貨方案?哪種方案獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一個動點,過C作CE垂直于BD或BD的延長線,垂足為E,如圖.
(1)若BD是AC的中線,求 的值;
(2)若BD是∠ABC的角平分線,求 的值;
(3)結(jié)合(1)、(2),試推斷 的取值范圍(直接寫出結(jié)論,不必證明),并探究 的值能小于 嗎?若能,求出滿足條件的D點的位置;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若AB是⊙0的直徑,CD是⊙O的弦,∠ABD=58°,則∠BCD=( )
A.116°
B.32°
C.58°
D.64°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鼓勵市民節(jié)約用水,某市居民生活用水按階梯式水價計費.如表是該市居民“一戶一表”生活用水及提示計費價格表的部分信息:(說明:①每戶產(chǎn)生的污水量等于該戶自來水用水量;②水費=自來水費用+污水處理費用)
已知小王家2012年4月份用水20噸,交水費66元;5月份用水25噸,交水費91元.
(1)求a、b的值;
(2)隨著夏天的到來,用水量將增加.為了節(jié)省開支,小王計劃把6月份的水費控制在不超過家庭月收入的2%.若小王家的月收入為9200元,則小王家6月份最多能用水多少噸?
自來水銷售價格 | 污水處理價格 | |
每戶每月用水量 | 單價:元/噸 | 單價:元/噸 |
17噸以下 | a | 0.80 |
超過17噸但不超過30噸部分 | b | 0.80 |
超過30噸的部分 | 6.00 | 0.80 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市今年的信息技術(shù)結(jié)業(yè)考試,采用學(xué)生抽簽的方式?jīng)Q定自己的考試內(nèi)容.規(guī)定:每位考生先在三個筆試題(題簽分別用代碼B1、B2、B3表示)中抽取一個,再在三個上機題(題簽分別用代碼J1、J2、J3表示)中抽取一個進(jìn)行考試.小亮在看不到題簽的情況下,分別從筆試題和上機題中隨機地各抽取一個題簽.
(1)用樹狀圖或列表法表示出所有可能的結(jié)果;
(2)求小亮抽到的筆試題和上機題的題簽代碼的下標(biāo)(例如“B1”的下表為“1”)均為奇數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,以矩形ABCD的對角線AC的中點O為圓心,OA長為半徑作⊙O,⊙O經(jīng)過B、D兩點,過點B作BK⊥AC,垂足為K.過D作DH∥KB,DH分別與AC、AB、⊙O及CB的延長線相交于點E、F、G、H.
(1)求證:AE=CK;
(2)如果AB=a,AD= (a為大于零的常數(shù)),求BK的長:
(3)若F是EG的中點,且DE=6,求⊙O的半徑和GH的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com