如圖6,在RtDABC中,ÐACB=90°,斜邊AB上的中線(xiàn)CD=1,DABC的周長(zhǎng)為2+,求ABC的面積.

 

答案:
解析:

解:設(shè)AC=b,  BC=a

    AB=2DC=2,

    a2+b2=4

    AC+BC+AB=2+

    a+b=

    (a+b)2=6,a2+b2+2ab=6

    ab=[6-4]=1

    SDABC=ab=

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•槐蔭區(qū)一模)(1)已知:如圖1,點(diǎn)A、C、D、B在同一條直線(xiàn)上,AC=BD,AE=BF,∠A=∠B.求證:∠E=∠F.

(2)已知:如圖2,在?ABCD中,AE平分∠DAB,交CD于點(diǎn)E.求證:DA=DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2012•大興區(qū)一模)閱讀下列材料:
小明遇到一個(gè)問(wèn)題:已知:如圖1,在△ABC中,∠BAC=120°,∠ABC=40°,試過(guò)△ABC的一個(gè)頂點(diǎn)畫(huà)一條直線(xiàn),將此三角形分割成兩個(gè)等腰三角形.
他的做法是:如圖2,首先保留最小角∠C,然后過(guò)三角形頂點(diǎn)A畫(huà)直線(xiàn)交BC于點(diǎn)D.將∠BAC分成兩個(gè)角,使∠DAC=20°,△ABC即可被分割成兩個(gè)等腰三角形.
喜歡動(dòng)腦筋的小明又繼續(xù)探究:當(dāng)三角形內(nèi)角中的兩個(gè)角滿(mǎn)足怎樣的數(shù)量關(guān)系時(shí),此三角形一定可以被過(guò)頂點(diǎn)的一條直線(xiàn)分割成兩個(gè)等腰三角形.
他的做法是:如圖3,先畫(huà)△ADC,使DA=DC,延長(zhǎng)AD到點(diǎn)B,使△BCD也是等腰三角形,如果DC=BC,那么∠CDB=∠ABC,因?yàn)椤螩DB=2∠A,所以∠ABC=2∠A.于是小明得到了一個(gè)結(jié)論:
當(dāng)三角形中有一個(gè)角是最小角的2倍時(shí),則此三角形一定可以被過(guò)頂點(diǎn)的一條直線(xiàn)分割成兩個(gè)等腰三角形.
請(qǐng)你參考小明的做法繼續(xù)探究:當(dāng)三角形內(nèi)角中的兩個(gè)角滿(mǎn)足怎樣的數(shù)量關(guān)系時(shí),此三角形一定可以被過(guò)頂點(diǎn)的一條直線(xiàn)分割成兩個(gè)等腰三角形.請(qǐng)直接寫(xiě)出你所探究出的另外兩條結(jié)論(不必寫(xiě)出探究過(guò)程或理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC在方格中.
(1)請(qǐng)?jiān)诜礁窦埳辖⑵矫嬷苯亲鴺?biāo)系,使A(2,3)、C(5,2),并求出B點(diǎn)坐標(biāo);
(2)以原點(diǎn)O為位似中心,相似比為2,在第一象限內(nèi)將△ABC放大,畫(huà)出放大后的圖形△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,在△ABC中,∠ABC的平分線(xiàn)BF交AC于F,過(guò)點(diǎn)F作DF∥BC,求證:BD=DF.

(2)如圖2,在△ABC中,∠ABC的平分線(xiàn)BF與∠ACB的平分線(xiàn)CF相交于F,過(guò)點(diǎn)F作DE∥BC,交直線(xiàn)AB于點(diǎn)D,交直線(xiàn)AC于點(diǎn)E.那么BD,CE,DE之間存在什么關(guān)系?并證明這種關(guān)系.
(3)如圖3,在△ABC中,∠ABC的平分線(xiàn)BF與∠ACB的外角平分線(xiàn)CF相交于F,過(guò)點(diǎn)F作DE∥BC,交直線(xiàn)AB于點(diǎn)D,交直線(xiàn)AC于點(diǎn)E.那么BD,CE,DE之間存在什么關(guān)系?請(qǐng)寫(xiě)出你的猜想.(不需證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案