如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為1的正方形OA1B1C的對(duì)角線A1C和OB1交于點(diǎn)M1;以M1A1為對(duì)角線作第二個(gè)正方形A2A1B2M,對(duì)角線A1M1和A2B2交于點(diǎn)M2;以M2A1為對(duì)角線作第三個(gè)正方形A3A1B3M2,對(duì)角線A1M2和A3B3交于點(diǎn)M3;…,依此類(lèi)推,這樣作的第6個(gè)正方形對(duì)角線交點(diǎn)的橫坐標(biāo)為_(kāi)_______.


分析:根據(jù)正方形性質(zhì)求出CM1=A1M1,∠COA1=∠M1A2A1=90°,推出M1A2∥OC,得出OA2=A2A1,根據(jù)三角形中位線求出M1A2=OC=×1=1,OA2=A2A1=OA1=×1=,即可求出M1的坐標(biāo),同理求出M2A3=M1A2=,A2A3=A3A1=A2A1=,OA3=+=,得出M2的坐標(biāo),根據(jù)以上規(guī)律求出即可.
解答:∵四邊形OCB1A1和四邊形A2A1B2M1是正方形,
∴CM1=A1M1,∠COA1=∠M1A2A1=90°,
∴M1A2∥OC,
∴OA2=A2A1
∴M1A2=OC=×1=1,OA2=A2A1=OA1=×1=
即M1的坐標(biāo)是(,),
同理M2A3=M1A2=×=,A2A3=A3A1=A2A1=×=,
∴OA3=+=
即M2的坐標(biāo)是(,),
同理M3的坐標(biāo)是(),M4坐標(biāo)是(,),M5的坐標(biāo)是(,),M6的坐標(biāo)是(),
故答案為:
點(diǎn)評(píng):本題考查了正方形性質(zhì),三角形的中位線的應(yīng)用,關(guān)鍵是能根據(jù)求出的結(jié)果得出規(guī)律,橫坐標(biāo)是,縱坐標(biāo)是(n
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案